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TRANSCRIBER'S NOTES:
The expression a(1/4) represents the generic number "a" to the
power of 1/4 which in science is equivalent to the 4th root of
number a; in other words: ∜a = a(1/4). This is true not only for a
to the power of 1/4 but for any power; i.e., a(1/n)=a to the nth root
of a.

When the sign (n) is used for a musical note, for example c(iv), the
sign stands for a superindex and in the example represents the
fourth octave after middle C.

The sign for double sharp is represented in music as a
superindexed x. Here it has been replaced by *.
A number of words in this book have both hyphenated and non-
hyphenated variants. For the words with both variants present the
one more used has been kept.
Obvious punctuation and other printing errors have been silently
corrected.
In the subsection devoted to acoustical analysis it is believed that
there is an error in one of the tables presenting the results. In the
first column of the second table in which the results are
presented assuming the hall is half empty, the text mentions the
results are for the "Rest of hall". It is believed it should say
instead the total of the calculation presented in the previous
table. The numbers presented in the second table are identical to
the numbers presented in the previous table in the line that reads
"Total units of absorprion".
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PREFACE

Much has been added to our scientific knowledge of musical sound, since Helmholtz
published his great work Tonempfindungen in 1862. The new knowledge has been
often and well described, but mostly by scientists writing for scientists in the
technical language of science.
In the present book I have tried to describe the main outlines of such parts of
science, both old and new, as are specially related to the questions and problems of
music, assuming no previous knowledge either of science or of mathematics on the
part of the reader. My aim has been to convey precise information in a simple non-
technical way, and I hope the subject-matter I have selected may interest the
amateur, as well as the serious student, of music.
I need hardly say that I am indebted to many friends and books. A considerable
fraction of my book is merely Helmholtz modernised and rewritten in simple
language. Another considerable fraction is drawn from the wealth of material
provided in the notes added to Helmholtz's book by his English translator, A. J. Ellis.
On the less technical side, I have borrowed largely from Dayton C. Miller's book
The Science of Musical Sounds (The Macmillan Company, 1934), and am especially
indebted to the author for permission to reproduce eleven excellent photographs of
sound-curves. Among other sources from which I have drawn largely, and found
especially valuable, I ought to mention:

Sound by Lord Rayleigh (2 vols. Macmillan & Co.);
Sound by F. R. Watson (John Wiley, 1935);

A Text-book of Sound by A. B. Wood (Bell, 1932);
Hearing in Man and Animals by R. T. Beatty (Bell, 1932);
Physical Society of London: Report of a Discussion on Audition (1931);
Physical Society of London: Reports on Progress in Physics. Vol. II, 1935, and
Vol. III, 1937;
Modern Acoustics by A. H. Davis (Bell, 1934);

The Acoustics of Orchestral Instruments and of the Organ by E. G. Richardson
(Arnold, 1929);
The Acoustics of Buildings by A. H. Davis and G. W. C. Kaye (Bell, 1932);



Collected Papers on Acoustics by W. C. Sabine (Harvard University Press,
1927);

as well as innumerable papers in technical and scientific journals.
On the personal side, I am especially indebted to my wife, to Henry Willis and to
Philip Pfaff, Mus. Bac.
J. H. JEANS

Dorking
June 1937



 CHAPTER I
INTRODUCTION

The Coming of Music

The lantern of science, throwing its light down the long corridors of time, enables us
to trace out the gradual evolution of terrestrial life. Far away in the dim distances of
the remote past we see it emerging from lowly beginnings—possibly single-cell
organisms on the sea shore—and gradually increasing in complexity until it
culminates in the higher mammals of to-day, and in man, the most complicated form
of life which has so far emerged from the workshop of nature. And as living beings
become more complex, they acquire an ever more intricate battery of sense-organs
which help them to find their way about the world, to escape danger, to capture their
food and avoid being themselves captured as food.
One of these is of special interest to musicians, for out of it has developed our
present organ of hearing. Sunk into the skin of a fish, and running the whole length
of its body, from head to tail on either side, there is a line of pits or depressions.
Under these lies an organ known as the "lateral-line" organ. This is believed to
register differences of pressure in the water, which will acquaint the fish with the
currents and eddies in which he is swimming, and may also warn him of the
proximity of other fish, especially of large fish of hostile intentions.
Even the most primitive fishes seem to have possessed a simple organ of this kind.
Gradually the depression nearest to the head developed into something far more
intricate, namely the hard bony structure known as the "labyrinth", which is found in
all vertebrates, including ourselves. It consists of hollow tubes filled with fluid, and
the main part of it is shaped so as to form three (or in rare cases only one or two)
semicircular canals, lying in directions mutually at right angles to one another, as on
the right of fig. 1.



Fig. 1. The labyrinth of the left human ear (magnified about 5 times). The three semicircular canals
are on the right (d, e, f) and the cochlea on the left (c). a is the oval window to which the ear-drum
transmits its vibrations; b is the round window, the function of which is explained below (p. 246).

When an animal turns its head or the upper part of its body, the fluid in the
semicircular canals lags behind, because of its inertia, and so rubs over a set of paint-
brushes of fine hairs, one in each canal; the bending of these hairs sends a series of
nerve-impulses to the brain, which inform it of the change of direction and initiate a
set of reflex actions to balance the change. Human beings are seldom conscious that
they possess such organs, although it is by their help that we regain our balance after
a sudden slip. They are also responsible for the giddiness we feel after spinning
round too often or too rapidly, and for part at least of the even less agreeable
sensations we experience when we are on a small ship in a turbulent sea.
A simple equipment of this kind would be adequate for primaeval fish, which lived
entirely in the water, but would soon prove inadequate under new conditions which
were to come. For the geologists tell us of a period of great drought occurring some
300 million years ago, when seas, lakes and marshes were all drying up. It must have
been an anxious time for the fishes, many of which would desert their pools and
shallows, and flop across dry land in the hope of finding new water. Clearly the more
amphibious they could become, the greater was their chance of survival. In time
some of the survivors became pure land-animals—our own ancestry. Organs for
registering differences of pressure in water would be of little use to them now. What
they needed was an organ to register minute differences of pressure in air, for these
were associated with sounds which might indicate the presence of food or of danger,
of friends or of enemies.
Gradually the required new organ seems to have developed out of the old. The story
of the change provides one of the most fascinating—and, one is almost tempted to
say, most incredible—chapters in the evolutionary record. A small area of the bony
structure of the labyrinth became thinned down into a yielding membrane of mere
skin, thin and soft enough to transmit variations of pressure from the air outside to
the fluid within. At the same time, the labyrinth itself grew in size and increased in



complexity. That of the frog shews a small bulge, which, as we proceed farther
upwards in the scale of life, gradually develops into the cochlea, which forms the
essential part of the ear of vertebrates. The external appearance of this wonderfully
intricate piece of apparatus is shewn in fig. 1 on p. 2; its interior is described later (p.
246). For the moment we can only compare it to the case, the sound-board and the
strings of a pianoforte of many strings—about 3000 in birds, 16,000 in cats and
24,000 in man—all compressed to the dimensions of less than a pea. It enables its
possessor not only to hear sounds, but also to analyse them into their constituent
tones. This power of analysis must obviously have had a great "survival value" for
primitive life, since sounds which have been analysed can be remembered, and those
which have once been found to be associated with danger can be promptly acted
upon when heard again—just as we do with the motor-horn in our less primitive life
of to-day.
In some such way as this, the human race became possessed of its ears. At first they
would merely be helps in the struggle for existence. But we can imagine primitive
man one day discovering in them an interest and a value of another kind; we can
imagine him finding that the hearing of some simple sound, perhaps the twang of his
bowstring or the blowing of the wind over a broken reed, was a pleasure in itself. On
that day music was born, and from that day to this innumerable workers of many
ages and of many peoples have been trying to discover new sounds of a pleasure-
giving kind, and to master the art of blending and weaving these together so as to
give the maximum of enjoyment, with the result that music of one kind or another
now figures largely in the lives of most civilised beings.

The Sense of Hearing

As life slowly climbed the long ladder of evolution, one sense after another arrived
and developed. Hearing was the last to arrive, and the last to attain a state bordering
on perfection. When it reached this state, the other senses were already highly
developed, and one, the sense of seeing, had already attained too much importance
to be displaced. For most animals seeing must always have been more important
than hearing, and whether we think in terms of our pleasure or of our well-being we
must admit that the same is true for us to-day; we would sooner lose any of our other
senses than that of sight. Throughout most of our waking life, we are seeing and
hearing at the same time, and our sensations of sight are usually far more intense
than those of sound. And as we obtain more pleasure through our eyes than through
our ears, we have acquired the habit of giving the greater part of our attention to
what we see, leaving a mere fraction for what we hear. Not only so, but hearing and
seeing do not blend well; they rather compete—in an unequal competition in which
seeing usually wins. In the opera house, many of us miss much of the music through
watching the acting too intently. Only when the distraction of sight is removed can
our minds give full attention to what we hear. Our appreciation of sound then



becomes far keener and more critical. This is why blind people so often become
exceptionally good musicians, and why many people who are not blind find it well
to listen to the radio with the room darkened, and to close their eyes in the concert
room, resisting the temptation to watch the fingers of the pianist, or the mouth of the
prima donna.

The Human Ear

The visible part of the ear consists of an external shell, the relics of an earlier sound-
collector, with an aperture—the "meatus" or auditory canal—somewhere in its lower
half. At the far end of this canal, approximately an inch inside the head, is a small
delicate membrane of skin, only about three thousandths of an inch in thickness. It is
oval in shape, being about a third of an inch in height, and two-fifths of an inch in
width. It is stretched tightly over a hard frame of bone, much as the skin of a drum is
stretched over a hard frame of wood; because of this it is known as the "membrana
tympani", or ear-drum (see fig. 2, p. 9 below).
Sound reaches our ears in the form of waves which have travelled through the
surrounding air, much as waves travel over the surface of a sea or river; some of
these waves travel down the inch-long backwater formed by the auditory canal, and
finally encounter the ear-drum, which forms a barrier at the far end.
When water-waves are stopped by a barrier, the pressure they exert on it varies with
the rise and fall of the waves, and the variations of pressure may shake it into
motion. We may often feel a sea-wall tremble under the pounding of the waves, and
a delicate seismograph many miles inland will record the impact of sea-waves on a
rocky coast. In the same way, sound-waves in air exert a varying pressure on our ear-
drums which may set them into motion. But there is one essential difference. The
sea-wall may be shaken to pieces in a few years, but the ear-drum has the capacity of
continually renovating itself, and so keeping its efficiency almost unimpaired. Even
if it is completely shattered by the intense noise of an explosion or a gun-blast, it will
renew itself in a few weeks.
Our ear-drums are sensitive to an almost inconceivable degree. The tiniest ripple in
the air sets them into motion; under favourable conditions a sound-wave of such
feeble intensity that the air is displaced only through a ten-thousand-millionth part of
an inch will send an audible sound to the brain. The change of pressure produced by
such a sound-wave is less than a ten-thousand-millionth part of the whole pressure of
the atmosphere, so that the human ear is incomparably more sensitive than any
barometer which has ever been constructed. The ordinary barometer will record the
lowering of atmospheric pressure which we experience as we walk upstairs in our
house, or climb a few feet up the mountain-side, but the change of pressure just
mentioned is that produced by an ascent of only a 30,000th of an inch. The feeblest
nodding of our head changes the pressure on our ear-drums by more than is



necessary to set them into motion, and if we do not hear a musical sound, it is only
because we cannot nod our heads with sufficient rapidity. For, although our ear-
drums are very sensitive to minute changes of pressure, it is only when these
changes are repeated in rapid succession that messages are passed on to the brain.
We shall see later why this is.
Immediately behind the ear-drum lies a chain of small bones, known as "ossicles".
The first of these is in contact with the ear-drum, while the last presses against the
"oval window" of the labyrinth, the thin yielding membrane of skin already
described (a in fig. 1). The ossicles transmit the motion of the ear-drum to this oval
window much as a bell-wire transmits a pull from a bell-rope to a bell. The oval
window passes the motion on to the fluid inside the labyrinth, and in this way it
reaches the cochlea—the miniature pianoforte which has already been mentioned.
The workings of the cochlea are not yet fully understood, but we know that out of it
emerges a bundle of nerves, and that when the ear-drum is set into vibration, minute
currents of electricity pass through these nerves to the brain, and produce in it
sensations which keep it informed as to the vibratory motions of the ear-drum.

The Process of Hearing

To obtain a more precise picture of the process of hearing, let us imagine that we are
listening to an ordinary telephone conversation.
The essentials are shewn diagrammatically in fig. 2. The ear is on the right, and is
open to the air as far as the ear-drum d. The telephone is on the left, and is open to
the air as far as a metal diaphragm D. We at once notice a sort of symmetry between
the two instruments, the solid cartilage and bone of the ear corresponding to the
vulcanite framework of the telephone, while the ear-drum d corresponds to the
diaphragm D of the telephone.
This diaphragm, like the ear-drum, has a complex piece of apparatus behind it, but
out of this only a single pair of wires emerges. This is the telephone line, which may
have its other end hundreds of miles away. Its function is to bring into the telephone
electric currents which represent sound produced at its other end. The telephone
transforms these currents into motions of the diaphragm, and so acts in just the
opposite way to the ear, which transforms motions of the ear-drum into electric
currents.



Fig. 2. Diagrammatic representation of the process of hearing. The action of the ear is somewhat like
that of a telephone, but reversed. The telephone transforms the variations of an electric current into
the vibrations of a diaphragm D, while the ear transforms the vibrations of the ear-drum d into electric
currents which transmit sensations to the brain.

The apparatus behind the diaphragm of the telephone consists primarily of a magnet
of the rather special kind known as a "polarising" magnet. Unlike the familiar horse-
shoe magnet, this is not made of magnetised steel throughout, but has two projecting
ends of soft iron. The telephone line makes several turns round each of these. Now a
well-known law of physics tells us that a piece of soft iron which is encircled by an
electric current becomes a temporary magnet, and so attracts any steel or iron which
may be in its proximity, for so long as the current is flowing. In our diagram the
magnet attracts the diaphragm D all the time, but when an electric current is flowing
through the telephone line, the two pieces of soft iron form an additional magnet,
and so give an extra pull to the diaphragm.
When we are listening to a telephone conversation, the current in the telephone line
is not of unvarying strength; it continually waxes and wanes. As a result of this
varying current, the diaphragm D experiences an extra pull which also waxes and
wanes; it is pulled at one moment weakly, at another forcibly, at still another not at
all, and so is kept continually in motion. Each time it moves a bit to the right, the air
between it and the ear-drum is pushed a bit to the right, so that the ear-drum itself is
pushed a bit to the right. Conversely, when the diaphragm moves to the left, the air is
sucked outwards and draws the ear-drum to the left. In brief, we may say that the
motion of the ear-drum reproduces that of the diaphragm, and this in turn reproduces
the changes in the strength of the current in the wire.
In the ear exactly the converse process is taking place. While the telephone receiver
is transforming the variations of electric currents in the wire into a mechanical
motion of the diaphragm, the ear is transforming the resulting mechanical motion of



the ear-drum into electric currents of varying intensity in the nerves which lead to
the brain, and these currents result in our hearing the sound. We shall discuss the
mechanism of the transformation later (p. 245). For the moment we return to our
telephone.

 Sound-Curves

The current flowing in the telephone wire at any instant can be measured with
simple electrical instruments, and its changes can be represented on a chart, like that
on which the recording barometer exhibits changes in the pressure of the
atmosphere. In such a chart a roll of paper is drawn horizontally and at a uniform
rate under a pen, which is connected with an ordinary barometer. As the height of the
barometer changes the pen moves up and down, and so draws a curve (see fig. 3)
which records the variations of pressure.

Fig. 3. A barometer chart. The horizontal scale indicates the passage of time, while the vertical scale
shews the height of the barometer at each of the instants represented on the horizontal scale. We see,
for instance, that at noon on Tuesday the barometer stood at 29.8 inches.

We can easily imagine a similar chart in which the passage of time is again
represented by motion in a horizontal direction, while vertical height no longer
represents the height of a barometer, but the strength of the current flowing in the
telephone wire. The units in which time is measured will no longer be whole days,
but perhaps hundredths of a second, while the units of current may be anything
suitable, but will certainly be something quite small.
We shall again be able to represent the fluctuations in the current by a curve of the
same general nature as that of the barometer record—such a curve, let us say, as is
shewn in fig. 4.



Fig. 4. A current chart. Just as variations of the pressure of the air can be represented by a curve in the
way shewn in fig. 3, so the variations of the current in a wire can be represented by a curve such as
that shewn above.

The motions of the diaphragm D of the telephone, or of the ear-drum, can also be
represented on an exactly similar chart, except that the vertical units will now
represent small units of length—perhaps millionths of an inch.
Thus we see that the current which conveys sound, the motion of the diaphragm
which transmits this sound to the ear, and the motion of the ear-drum itself, can all
be represented by curves of the kind shewn in fig. 4. And as the motion of the ear-
drum follows that of the diaphragm, while this in turn follows the changes in the
current, these curves will all be similar in shape. Each of them represents a certain
sound, or succession of sounds. Further, as we know that all sounds, whether
produced by nature or by art, can be transmitted by telephone, it follows that all
sounds can be represented by such a curve—a cough or a sneeze, the voice of a
friend, or an orchestra playing a symphony. Such curves are now easily recorded by
various instruments, the cathode-ray oscillograph in particular. Many photographs of
curves taken by this and other forms of oscillograph will be found in the present
book. The curves shewn on Plate I may be regarded as typical of many; they are the
curves of a bass voice singing the vowel ā in father, and of a baritone voice singing
the word rivers to an orchestral accompaniment.



PLATE I

Dayton C. Miller
Fig. 1. The sound-curve of the vowel ā as in father, intoned by a bass voice at pitch F. The dots below the curve

indicate intervals of 1/100 second.

Dayton C. Miller
Fig. 2. The sound-curve of a gramophone record of a baritone voice singing word rivers to the accompaniment of
an orchestra. The dots below the curve again indicate intervals of 1/100 second, so that the curve is much more

compressed than that shewn in fig. 1.

TYPICAL SOUND-CURVES



Before a symphony can be played by an orchestra there must be collaboration of
many parties—a composer, the makers and the players of many instruments and the
conductor of the orchestra. All are, or have been, at work to produce—just a curve.
If they have done their work well, the sound that this curve represents will be both
pleasing to our ears and interesting to our minds. The composer, in writing his score,
has given a first rough indication of the curve he desires—he has, so to speak,
specified its main ingredients, and the instants at which they are to join the general
mêlée. It is the business of the instrument-maker and the players to see that these
ingredients are of good quality, while the function of the conductor is to see that they
join in at the right moments and in the right proportions. All the art, all the
mannerisms, all the successes and failures of these many workers are embodied in
the one single curve. This curve is the symphony—neither more nor less, and the
symphony will sound noble or tawdry, musical or harsh, refined or vulgar, according
to the quality of this curve.
 When a gramophone record is made of the performance of the symphony, this curve
is preserved in a tangible form; it is nothing more or less than the shape of the
uneven rim of the groove in which the gramophone needle runs when the record is
played. On playing the record, we transform the curve into the music it represents.
As the point of the needle is dragged along the groove—or, more accurately, as the
groove is dragged under the point of the needle—the unevennesses in the walls of
this groove make the needle move continually to the right and left. The blunt end of
the needle transmits this motion to a mica diaphragm, which in turn imparts it to the
surrounding air. The air then conveys the motion to our ear-drums, much as it was
conveyed from the diaphragm of the telephone in fig. 2, except that the greater
distance of our ears introduces a complication which we shall discuss later. In this
way our ear-drums are made to vibrate in response to the curve which forms the rim
of the groove of the record, and our brains are made conscious of the music that the
curve represents.

The Transmission of Sound

If we had perfect materials at our disposal, ideal in quality and unlimited in quantity,
it would be a simple matter to arrange that the curve received by our ears should be
exactly identical with that which was created by the orchestra—we should then have
what is described as "perfect transmission". What we heard might be good or bad,
pleasant or unpleasant, but it would at least be a faithful reproduction of what was
played. Unhappily we live in an imperfect world in which perfect transmission is
impossible.
 Transmission is at its simplest when we sit in the same room as the orchestra. In this
case the only transmitter is the air of the room, but even so the curve undergoes a
good deal of distortion on its journey from the orchestra to our ears. For we shall see
in a later chapter how the walls, the roof and floor, the clothes of the audience, and



even the empty seats, all reflect sound in varying degrees, so that a considerable part
of the sound we hear may have been reflected dozens of times before it reaches our
ears, and every reflection will have changed the character of the sound-curve. If the
music is broadcast, many more changes intervene before the sound reaches our ears.
The sound-curve produced by the orchestra must then be handed on from the air of
the concert room to the diaphragm of a microphone, from this to an electric current
in a wire, from this to a shower of electrons jumping through a system of valves,
from this to a current in an aerial, from this to waves of electric and magnetic force
travelling through space, from these to another aerial and its connections in a
receiving set, from these through more showers of electrons in valves to yet another
current in another wire, from this to the diaphragm of a loudspeaker, from this to the
air, and finally from this to our ear-drums. Each time the sound-curve is passed on
from one of these carriers to another, it undergoes a certain amount of "distortion";
its shape is changed, its refinements and subtleties usually being more or less blurred
over, imperfections and impurities creeping in, and the quality generally undergoing
a change for the worse.
These changes are, however, insignificant in comparison with the changes
introduced by the ear itself. We shall see later that this may add entirely new musical
notes to those which are played by the orchestra. It may also—and this not only with
people who are partially deaf—filter out certain other notes of high and low pitch
entirely, refusing to transmit them to the brain. Even if it does not do this, it
invariably favours certain sounds at the expense of others, so that the various sounds
are heard in proportions quite different from those in which they were played by the
orchestra.
We can now see the general plan of the discussion which lies before us. We have to
consider the generation of sound, its passage to our ear-drums, and its transmission
from these to our brains. We have seen that all sound, whether pleasant or
unpleasant, whether music or mere noise, is represented by a curve. We shall first
examine the general properties of such a curve, trying to discover why some curves
produce pleasure when they reach our ears and some pain. We must then consider
the transmission of sound, discussing how best to retain the pleasurable qualities in
our sound-curve, as it passes on from one carrier to another, and how far it is
possible to prevent unpleasant qualities contaminating the curve. Finally we shall
have to discuss the strange transformations that the sound-curve may undergo inside
our heads. In accordance with this, the next three chapters deal with various methods
of producing sound, and the qualities of the sounds they produce, as indicated by
their sound-curves. The next (Chapter V) will deal with the choice of the sound to be
produced. After this we discuss in Chapter VI the transmission of sound from its
source to the ear-drum, and in Chapter VII its transmission from the ear-drum to the
brain.



CHAPTER II
TUNING-FORKS AND PURE TONES

We have seen that every sound, and every succession of sounds, can be represented
by a curve, and our first problem must obviously be to find the relation between such
a curve and the sound or sequence of sounds it represents—in brief, we must learn to
interpret a sound-curve.

Pure Tones

Let us start by taking an ordinary tuning-fork as our source of sound. We begin with
this rather than, let us say, a violin or an organ-pipe, because it gives a perfectly pure
musical note, as we shall shortly see. If we strike its prongs on something hard, or
draw a violin-bow across them, they are set into vibration. We can see that they are
in vibration from their fuzzy outline. Or we can feel that they are in vibration by
touching them with our fingers, when we shall experience a trembling or a buzzing
sensation. Or, without trusting our senses at all, we may gently touch one prong with
a light pith ball suspended from a thread, and shall find that the ball is knocked away
with some violence.

Fig. 5. The vibrations of a tuning-fork give a fuzzy appearance to the prongs and cause them to repel a light pith
ball with some violence.



When the prongs of the fork vibrate, they communicate their vibrations to the air
surrounding them, and this in turn transmits the agitation to our ear-drums, with the
result that we hear a sound. We can verify that the air is necessary to the hearing of
the sound by standing the vibrating fork inside an air-pump and extracting the air.
The fuzzy appearance of the prongs shews that the fork is still in vibration, but we
can no longer hear the sound, because the air no longer provides a path by which the
vibrations can travel to our ears.

Fig. 6. The trace of a vibrating fork can be obtained by drawing a piece of paper or smoked glass under it.

To study these vibrations in detail, we may attach a stiff bristle or a light
gramophone needle to the end of one prong of the fork, and while the fork is in
vibration, run a piece of smoked glass under it as shewn in fig. 6, taking care that it
moves in a perfectly straight line and at a perfectly steady speed. If the fork were not
vibrating, the point of the needle would naturally cut a straight furrow through the
smoky deposit on the glass; if we held the glass up to the light, it would look like fig.
7. In actual fact, we shall find it looks like fig. 8, which is a copy of an actual
photograph; the vibrations have left their record in the smoke, so that the needle has
not cut a straight but a wavy furrow. Each complete wave obviously corresponds to a
single to-and-fro motion of the needle point, and so to a complete vibration of the
prong of the tuning-fork.

Fig. 7. The trace of a non-vibrating fork.



Fig. 8. The trace of a vibrating fork. The waves are produced by the vibrations of the fork, one complete wave by
one complete vibration.

This wavy curve must clearly be the sound-curve of the sound emitted by the
vibrating fork. For if we reverse the motion and compel the needle to follow the
furrow, the sideways motions of the needle will set up similar motions in the prong
to which it is attached, and these will produce exactly the same sound as was
produced when the fork vibrated freely of itself. In fact, the whole process is like
that of listening to a gramophone record, except that the tuning-fork, instead of a
mica diaphragm, transmits the sound-vibrations to the air.
This simple experiment has disclosed the relation between the musical sound
produced by a tuning-fork and its curve, which we now find to consist of a
succession of similar waves.
The extreme regularity of these waves is striking; they are all of precisely the same
shape, so that their lengths are all exactly the same, and they recur at perfectly
regular intervals. Indeed, it is this regularity which distinguishes music from mere
noise. So long as a gramophone needle is moving regularly to-and-fro in its groove
we hear music; the moment it comes upon an accidental scratch on the record, so
that its motion experiences a sudden irregular jerk, we hear mere noise. In such ways
as this, we discover that regularity is the essential of a musical sound-curve. Yet the
regularity can be overdone, and absolute unending regularity produces mere
unpleasing monotony. The problem of designing a curve which shall give pleasure to
the ear is not altogether unlike that of designing a building which shall give pleasure
to the eye. A mere collection of random oddments thrown together anyhow is not
satisfying; our aesthetic sense calls for a certain amount of regularity, rhythm and
balance. Yet these qualities carried to excess produce monotony and lifelessness—
the barracks in architecture and the dull flat hum of the tuning-fork in music.

Period, Frequency and Pitch

When a tuning-fork is first set into vibration, we hear a fairly loud note, but this
gradually weakens in intensity as the vibrations transfer their energy to the
surrounding air. Unless the fork was struck very violently in the first instance, we
notice that the pitch of this note remains the same throughout; if the fork sounded



middle C when it was first struck, it will continue to sound this same note until its
sound dies away into silence.[A] On taking a trace of the whole motion, in the
manner shewn in fig. 6, we find that the waves slowly decrease in height as the
sound diminishes in strength, but they remain always of the same length.
If we measure the speed at which the fork is drawn over the smoked glass in taking
this trace, we can easily calculate the amount of time the needle takes to make each
wave. This is, of course, the time of a single vibration of the fork, and is only a
minute fraction of a second; we call it the "period" of the vibration. The number of
complete vibrations which occur in a second is called the "frequency" of the
vibration. Actual experiment shews that a tuning-fork which is tuned to middle C of
the pianoforte will be found to execute 261 vibrations in a second, regardless of
whether the sound is loud or soft.
This frequency of 261 is associated with the pitch of middle C not only for the sound
of a tuning-fork, but also for all musical sounds, no matter how they are produced.
For instance, a siren which runs at such a rate that 261 blasts of air escape in a
second will sound middle C. Or we may hold the edge of a card against a rotating
toothed wheel; if 261 teeth strike the card every second we again hear middle C. If a
steam-saw runs at such a rate that 261 teeth cut into the wood every second, it is
again middle C that we hear. The hum of a dynamo is middle C when the current
alternates at the rate of 261 cycles a second, and this is true of all electric machinery.
There are electric organs on the market in which the sound of a middle C pipe is
copied, sometimes very faithfully, by an electric current which is made to alternate at
the rate of 261 cycles a second. Again, when a motor-car is running at such a rate
that the pistons make 261 strokes a second, a vibration of frequency 261 is set up,
and we hear a note of pitch middle C in the noise of the engine.

All this shews that the pitch of a sound depends only on the frequency of the
vibration by which it is produced. It does not depend on the nature of the vibration.
Thus we may say that it is the frequency of vibration that determines the pitch of a
sound. If there is no clearly defined frequency, there is no clearly defined pitch,
because the sound is no longer musical.
When a siren or steam-saw or dynamo is increasing its speed, the sound we hear
rises in pitch, and conversely. Thus we learn to associate high pitch with high
frequency, and vice versa. If we experiment with a series of forks tuned to all the
notes in the middle octave of the piano, we shall find the following frequencies:

c 261.6 f 349.2 a 440.0
c♯ 277.2 f♯ 370.0 a♯ 466.2
d 293.6 g 392.0 b 493.9
d♯ 311.1 g♯ 415.3 c' 523.2
e 329.6    



Such, at least, are the numbers of vibrations for tuning-forks or any other
instruments tuned in "equal temperament" (see p. 174, below) to the new (1939)
internationally agreed pitch of a=440. But many other standards of pitch are still in
use, and even more were in use in the past. The lengths of old organ-pipes give us
information as to the pitches which were in use in early times, and shew that one and
the same note often had very different frequencies in different instruments. In
Germany, for instance, Silbermann's great organ in Strassburg Cathedral (1713) had
the pitch a=393; while Schnitger's organ in S. Jacobi in Hamburg (1688) was tuned
to a=489—nearly four semitones higher. And this was not the worst, for the "church
pitch" of Northern Germany had been given by Pretorius (1619) as a=567, which is a
full six semitones higher than that of the Strassburg organ. Not only so, but secular
music was often played in a substantially higher pitch than sacred music, so that
there was a "chamber" pitch which was quite distinct from the "church" pitch. There
were similar variations in other countries. In England, Father Smith's organ in
Trinity College, Cambridge, was tuned (1759) to a = 395, while Berhardt Schmidt's
organs in Durham Cathedral and the Chapel Royal gave a=474.1—more than three
semitones above the Trinity organ.
Early in the eighteenth century efforts were made to make musical pitch more
uniform, but it still ranged from about 415 to 430 for a. It stayed fairly stationary
within these limits for about a century, when musicians, striving for greater
brilliance and keenness of tone, began again to raise the frequency. In 1879 the
Covent Garden Orchestra was playing at a pitch of a=450, while in America the so-
called "Concert Pitch" went as high as a=461.6.
In 1859 a French Government Commission recommended a=435 as standard pitch,
and this came into fairly general use on the Continent. But in America, a=440 was
often taken as standard, and in England, where it has been usual to tune from c rather
than a, c'=522, corresponding to a=438.9. In 1939, an international conference met
in London and agreed on a=440 as a new standard for universal use, at least in
broadcasting. With this standard the frequencies of notes are those given in the table
on p. 22.

These frequencies might at first sight be thought to be a mere random collection of
numbers, but a little study shews that they are not.
We notice at once that the first number 261.6 is just half of the last number 523.2.
Thus our experiments have shewn that in this particular case the interval of an
octave corresponds to a 2 to 1 ratio of frequencies, and other experiments shew that
this is universally true—doubling the frequency invariably raises the pitch by an
octave. The octave interval is fundamental in the music of all ages and of all
countries; we now see its physical significance.
We may further notice that the interval from c to c♯ represents a rise in frequency of
just about 6 per cent. and a little arithmetic will shew that the same is true for every
other interval of a semitone. The rise cannot be precisely 6 per cent. for each



semitone, since if it were, the rise in the whole octave, consisting of twelve such
intervals, would be equal to 1.06x1.06x1.06x...etc., there being twelve factors in all,
each equal to 1.06. This is the quantity which the mathematician describes as
(1.06)12, and it is equal to 2.0122, and not to exactly 2.
In an instrument such as the piano or organ, which is tuned to "equal temperament"
(see p. 174, below), the exact interval of 2 is spread equally over the twelve
semitone intervals which make the octave. Each step accordingly represents a
frequency ratio of 1.05946, since this is the exact twelfth root of 2.
By repeated multiplication by the factor 1.05946, we obtain the following table for
the ratios of the frequencies of notes of any octave to that of c:



Frequency ratios within the octave

c = 1
c♯ = 1.05946 g = (1.05946)c7= 1.4983
d = (1.05946)2 = 1.1225 g♯ = (1.05946)8 = 1.5874
d♯ = (1.05946)3 = 1.1892 a = (1.05946)9 = 1.6818
e = (1.05946)4 = 1.2599 a♯ = (1.05946)10 = 1.7818
f = (1.05946)5 = 1.3348 b = (1.05946)11 = 1.8877
f♯ = (1.05946)6 = 1.4142 c' = (1.05946)12 = 2.0000

The next note c♯' will, of course, have a frequency of (1.05946)13 times that of c.
Since (1.05946)12 = 2, this is the same thing as 2x1.05946 or twice the frequency of
c♯, and so on.
Increasing the frequency of any note whatever by a factor 1.05946 simply raises its
pitch by a semitone, and this is true throughout the whole of the scale. We can verify
this by increasing the speed of a siren or a steam-saw or any of the other appliances
already mentioned. Perhaps the simplest way of all is to take a gramophone record of
a pianoforte solo which has been recorded for the standard rate of 78 revolutions,
and run it at 82.6 revolutions, which is just 1.05946 times the standard rate. We shall
find that the whole piece sounds exactly as it did when we played it at the standard
rate of 78, except that it is a semitone higher. If the original piece was in the key of C
we now hear it in the key of C♯, and so on. If we could run our gramophone at
double its normal rate, 156 revolutions, we should again hear our piece of music in
its original key of C, but played an octave higher.

We can now make a table shewing the frequency of every musical note. Before
doing this, it will be well to introduce a notation to distinguish the different octaves,
and we shall find it convenient, whenever we wish to specify particular octaves, to
use a slight modification of a notation originally proposed by Helmholtz. In this, the
different octaves are distinguished by their notes being printed in different styles of
type, each octave being supposed to start with c, and to extend to the b above.
The styles of type used in the present book are shewn in fig. 9 opposite.
It will be noticed that the unaccented letters c, d, e,... are not used, so that we are free
to use them when it is not desired to specify any particular octave.
We must also decide on our standard of pitch. Partly because there are so many
different pitches in use, and partly for numerical convenience, it is usual to make all
theoretical calculations in terms of a standard pitch c"=512. If we use this pitch, our
table stands as below. The frequencies for any pitch in actual use can be obtained by
adding a small percentage. For c"=522, for instance, we must add 2 per cent., since
522 is very nearly 2 per cent. greater than 512.



Fig. 9. The notation used in the present book, which is a slight modification of that of Helmholtz,
shewn in relation to the musical staves, the keyboard of the pianoforte, and the lengths of open organ-
pipes.



Frequencies of tones from CCCC to cvi (c"=512)

    Octave     
Note          

 CCCC CCC CC C c' c" c‴ civ cv

c 16 32 64 128 256 512 1024 2048 4096
c♯ 17 34 68 136 271 542 1085 2170 4340
d 18 36 72 144 287 575 1149 2299 4598
d♯ 19 38 76 152 304 609 1218 2436 4871
e 20 40 81 161 323 645 1290 2580 5161
f 21 43 85 171 342 683 1367 2734 5468
f♯ 23 45 91 181 362 724 1448 2896 5793
g 24 48 96 192 384 767 1534 3069 6137
g♯ 25 51 102 203 406 813 1625 3251 6502
a 27 54 108 215 431 861 1722 3444 6889
a♯ 29 57 114 228 456 912 1825 3649 7298
b 30 60 121 242 483 987 1933 3866 7732

Simple Harmonic Curves

Having learned all we can from the regularity and length of the waves in fig. 8, let us
next examine their form. The extreme simplicity of their shape is very noticeable,
although it must be said at once that this is not a property of all sound-curves; these
particular curves are simple because they are produced by the simplest of all musical
instruments—the tuning-fork. Exact measurement shews that the curve has a shape
with which the mathematician is very well acquainted. It is called a "sine" curve, or
a "simple harmonic" curve, while the motion of the needle which produces it is
described as "simple harmonic motion".

These simple harmonic curves and the simple harmonic motion by which they are
produced are of fundamental importance in all departments of mechanics and
physics, as well as in many other branches of science. They are particularly
important in the theory of vibrations, and this makes them of especial interest in the
study of music, since musical sound is almost invariably produced by the vibrations
of some mechanical structure—a stretched string, a column of air, a drum-skin, or
some metallic object such as a cymbal, triangle, tube or bell. For this reason, we
shall discuss vibrations in some detail.



General Theory of Vibrations

Generally speaking, every material structure can find at least one position in which it
can remain at rest—otherwise it would be a perpetual motion machine. Such a
position is called a "position of equilibrium". When a structure is in such a position,
the forces on each particle of it—as for instance the weight of the particle, and the
pushes and pulls from neighbouring particles—are exactly balanced. Any slight
disturbance, such as a push, pull or knock from outside, will cause the structure to
move out of this position of equilibrium to some new position, in which the forces
on a particle are no longer evenly balanced; each particle then experiences a
"restoring force" which tends to pull it back to the position it originally occupied.
This force starts by dragging the particle back towards its original position of
equilibrium. In time it regains this position, but as it is now moving with a certain
amount of speed, it overshoots the position and travels a certain distance on the other
side before coming to rest. Here it experiences a new force tending to pull it back;
again it yields to this force, gets up speed, overshoots the mark, and so on, the
motion repeating itself time after time. Clearly the trace of the motion of any particle
will be a succession of waves, like those we have already obtained from the tuning-
fork in fig. 8 (p. 19).
Motion of this kind is described by the general term "oscillation". In the special case
in which each particle only moves through a very small distance, the motion is called
a "vibration". Thus a vibration is a special kind of oscillation, and, as it happens,
possesses certain very simple properties which are not possessed by oscillations in
general. It is usually true of oscillations that the farther a particle moves from its
position of equilibrium, the greater is the restoring force pulling it back. But in a
vibration the restoring force is exactly proportional to the distance the particle has
moved from its position of equilibrium; draw it twice as far from this position, and
we double the force pulling it back.
A simple mathematical investigation shews that when this relation holds, the motion
of every particle will be of the same kind, whatever the structure to which it belongs.
Motion of this kind is defined to be "simple harmonic motion".
We have already found a concrete instance of this kind of motion in the tuning-fork.
Another is provided by what is perhaps the simplest mechanical structure we can
imagine—a weight suspended by a fine thread. The position of equilibrium is one in
which the weight lies at a point C exactly under the point of suspension. When the
weight is drawn a short distance aside to an adjacent position B, there is no longer
equilibrium, and the weight tends to fall back to C. In technical language, a restoring
force acts on the weight, tending to draw it back to its position of equilibrium C, and
it is a simple problem in dynamics to find its amount. So long as the displacement of
the weight is not too large, we find that the restoring force is exactly proportional to
the extent of the displacement BC, so that the condition for simple harmonic motion
is fulfilled, Indeed, if we take a trace by attaching a needle to the weight and running



a piece of paper horizontally under it, as in fig. 11, we shall find that this trace is a
simple harmonic curve exactly like that made by our tuning-fork.

Fig. 10. A position of equilibrium. The weight can rest in equilibrium at C but nowhere else. If we pull it aside to
B, it tends to return to C.

If we set our suspended weight swinging more violently, and again take a trace of its
motion, we shall again obtain a simple harmonic curve. The waves will, of course,
be greater in size, but their period will be exactly the same as before. We find that
the swinging weight makes just as many swings per second, no matter what the
extent of these swings may be, provided always that they are small enough to qualify
as vibrations. This illustrates the well-known fact that the period of vibration of a
pendulum depends only on its length, and not on the extent of its swing; it is because
of this that our pendulum clocks keep time.



Fig. 11. Taking the trace of a swinging pendulum. The trace is found to be a simple harmonic curve, exactly
similar to that given by a vibrating tuning-fork (fig. 6).

We found a similar property in the tuning-fork, the period of its vibrations being the
same whether we struck it fairly hard or only very softly. And all true vibrations
possess the same property—the period is independent of the extent and energy of the
swing. This is a most important fact for the musician. It means that every musical
instrument in which the sound is produced by vibrations will "keep time" like a
pendulum clock, and so will give a note of the same frequency, and therefore of the
same pitch, whether it is played soft or loud. Without this property it may almost be
said that music, as we know it, would be impossible. We can hardly imagine an
orchestra acquitting itself with credit if every note was out of tune unless it was
played with exactly the right degree of force. Crescendos and diminuendos could
only be produced by adding and subtracting instruments. As the note of a piano or
any percussion instrument decreased in strength it would also change in pitch, and
every piece would inevitably begin with a howl and end with a wail.
At the same time, every musician is familiar with cases in which the pitch of an
instrument is changed appreciably by playing it softer or louder. The flautist can
always pull his instrument a bit out of tune by blowing strong or weak, while the
organist knows only too well the dismal wail of flattened notes which is heard when
his wind gives out. We shall discuss the theory of such sounds as these later, and
shall find that they are not produced by absolutely simple vibrations like those of the
tuning-fork or pendulum.

Simultaneous Vibrations

Many structures are capable of vibrating in more than one way, and so may often be
performing several different vibrations at the same time. There is a very general
principle in mechanics, which asserts that when any structure whatever is set into
vibration—provided only that the displacement of each particle is small—the motion
of every particle is either a simple harmonic motion or else is a more complicated
motion which results from superposing a number of simple harmonic motions, one
for each vibration which is in progress.



Fig. 12. The superposition of two vibrations. The two wavy curves in (a) have periods which stand in
the ratio of 6¼ to 1. On superposing them we obtain the curve (b), which represents very closely the
sound-curve of a tuning-fork which is sounding its clang tone.

A simple illustration will shew how this can be. Let us suppose that while our
tuning-fork is in vibration we hit it on the top of one of the prongs with a hammer.
We shall hear a sharp metallic click, which is known as the "clang tone" of the fork.
A good musical ear may perhaps recognise that its pitch lies about 2½ octaves above
the ordinary note of the fork. Clearly the blow of the hammer has started new
vibrations in the fork, of much higher frequency than the original vibration. If we
had taken a trace of the motion when the original vibration was acting alone we
should have obtained a curve like that shewn in fig. 1 of Plate II. This is reproduced
as the long-waved curve in fig. 12(a). If we take a trace of the clang tone alone, it
will be like the short-waved curve in fig. 12(a), this representing a simple harmonic
motion having 6¼ times the frequency of the main vibration.
Now suppose we take a trace when the two vibrations are going on together. At the
instant of time represented at the point P, the particle under consideration is
displaced through a distance PQ by the main vibration, and through a distance PR by
the vibration which produces the clang tone. Thus the operation of the two vibrations
together displaces it through a distance PQ + PR, and this is equal to PS if we make
QS equal to PR. By adding together displacements in this way all along the curve,
we obtain the curve shewn in fig. 12 (b) as the trace to be expected when both
vibrations are in action together. The photograph of an actual trace is shewn in fig. 2
of Plate II.
In addition to the clang tone just mentioned, we may often hear a second clang tone
about four octaves higher than the fundamental note of the fork. Indeed, it is difficult
to start the fork sounding in such a way that the pure tone of the fork is heard
without any admixture of these higher tones. We more usually obtain a mixture of all



three tones, but this does not interfere with the utility of the tuning-fork as a source
of pure musical tone, since the sounds of higher frequency die away quite rapidly,
and the ear soon hears nothing but the fundamental tone of the fork.



PLATE II

Dayton C. Miller
Fig. 1. The sound-curve of the simple tone from a tuning-fork. The note is of frequency 256 middle C, and the

dots indicate intervals of 1/100 second.

Dayton C. Miller
Fig. 2. The sound-curve of the note from a tuning-fork when the clang tone is sounding. The clang tone

superposes small waves onto the longer waves, shewn in fig. above, which represent the main tone of the fork.

SOUND-CURVES OF A TUNING-FORK



A second example of simultaneous vibrations can be made to teach us something
new. If we return to our weight suspended by a string and knock it sideways, it will
swing from side to side pendulum-wise through some such path as AB in fig. 10 (p.
30), and its motion, as we have already seen, will be simple harmonic motion.
Suppose, however, that when the weight is at B, we give it another slight knock in
the direction at right angles to AB, i.e. through the paper of our page in fig. 10. This
sets up a new vibration in a direction at right angles to AB, and the motion in this
direction also must be simple harmonic motion. As we have seen that the period of a
pendulum depends only on its length, the new motion will have the same period as
the original motion. The whole motion is accordingly obtained from the
superposition of two simple harmonic motions whose periods are equal.

Figs. 13, 14 and 15. Three different types of motion which can be executed by the bob of a conical pendulum.

If we watch the weight from a point directly above it, we shall see it moving in a
curved path round its central position C. If the second knock was violent, its path
will be an elongated ellipse such as AA'BB' in fig. 13. If the knock was gentle, its
path will be an ellipse elongated in the other direction such as AA'BB' in fig. 14. But
if the knock was of precisely the same strength as that which originally set the
pendulum in motion along AB, then the weight will move in the circle AA'BB' in fig.
15, forming the arrangement which is generally described as a conical pendulum. It
must move with the same speed at each point of its journey, for it is moving in a
perfectly level path, so that there is no reason why it should move faster at any one
point than at any other.
Thus we learn that each of the motions illustrated in figs. 13, 14 and 15 can be
regarded as the superposition of two simple harmonic motions of equal periods. The
last of the three is by far the most interesting, because it shews us that a simple
circular motion performed at uniform speed can be regarded as made up of two
simple harmonic motions in directions at right angles to one another. To put this
more definitely, let us imagine that the point P in fig. 16 moves round the circle
AA'BB' with uniform speed, like the hand of a clock. Wherever P is, let us draw
perpendiculars PN, PM on to the lines AB, A'B'. Then, as P moves steadily round the



circle, N moves backwards and forwards along AB, while M moves backwards and
forwards along A'B'. We have learnt that the motion of each of these points will be
simple harmonic motion.

Fig. 16. A geometrical interpretation of simple harmonic motion. As the point P moves steadily round the circle,
the point N moves backwards and forwards along AB, and its motion is simple harmonic motion.

This gives us a simple geometrical explanation of simple harmonic motion—as P
moves steadily round in a circle, the point N moves in simple harmonic motion. It is
easy to see from this definition that the motion of the piston in the cylinder of a
locomotive or a motor-car must be approximately simple harmonic motion.
Or we may look at the problem from the other end, and see that as the point N moves
to-and-fro in simple harmonic motion along AB, the point P moves steadily round
the circle AA'BB'. This circle is called the "circle of reference" of the simple
harmonic motion. Its diameter AB is called the "extent" of the motion, while its
radius CA or CB is called the "amplitude" of the motion.

Energy

The amplitude of a vibration gives an indication of its energy, for it is a general law
that the energy of a vibration is proportional to the square of the amplitude. For
instance, a vibration which has twice the amplitude of another has four times the
energy of the other; in other words, the vibrating structure to which it belongs has
four times as much capacity for doing work stored up within itself, and it must get
rid of this in some way or other before it can come to rest. The energy stored up in a
musical instrument is usually expended in setting the air around it into vibration;
indeed it is only through its steady outpouring of energy into the surrounding air that
we hear the instrument at all.

It follows that if we want to maintain a vibration at the same level of energy we must
continually supply energy to it—as we do with an organ-pipe or a violin-string. If
energy is not supplied the vibration will die away—as with a piano-string or a bell or
a cymbal. The amplitude of the vibration then slowly decreases, and the circle of
reference shrinks in size.
When a structure is performing several vibrations at the same time, energy does not
usually pass from one vibration to another. The vibrations are independent, each
possessing its own private store of energy which it preserves intact, except for what



it may pass on to other outside structures—as for instance, the air around it. Thus the
energy of a number of simultaneous vibrations may be thought of as the sum of the
energies of the separate vibrations.

Simultaneous Sounds

When a tuning-fork is sounding, every particle of its substance moves in simple
harmonic motion, and those particles which form its surface transmit their motion to
the surrounding air. The final result is that every particle of air which is at all near to
the tuning-fork is set into motion and moves with a simple harmonic motion, which
will naturally have the same period as the tuning-fork. This period is still preserved
when the vibration is passed on to the ear-drum of a listener—that is why the note
heard by the ear has the same pitch as the fork.
A more complicated situation arises when two tuning-forks are standing side by side.
Each then imposes a simple harmonic motion on to the particle of air, so that this has
a motion which is obtained by superposing the two motions.
We must study motions of this kind in some detail, because they are of great
importance in the practical problems of music. We begin with the simplest problem
of all—the superposition of two motions which have the same period. The resulting
motion is that which would be forced on a particle of air by the simultaneous
vibrations of two forks of the same pitch standing side by side.

 Superposing Vibrations of the same Period

The two simple harmonic motions can be represented by two simple harmonic
curves, such as those which pass through X and Y in fig. 17. These particular curves
have been drawn with their amplitudes in the ratio of 5 to 2, so that YN = 2/5 XN,
and the same relation holds all along the curves. At the instant of time represented at
the point N, the first harmonic motion produces a displacement through a distance
XN, while the second produces a displacement through a distance YN which is 2/5
times XN. Thus the combined effect of the two motions is a displacement through a
distance equal to 1-2/5 times XN. This is represented by ZN in fig. 17.



Fig. 17. The superposition of two simple harmonic motions of equal period. Here the vibratory
motions (represented by the thin curves) are "in the same phase"—crest over crest and trough over
trough. The vibrations now reinforce one another, and their resultant (represented by the thick curve)
has an amplitude which is equal to the sum of the amplitudes of the two constituents.

The thick curve through Z is drawn so that its distance above or below the central
line is everywhere exactly 1-2/5 times that of the thin curve through X. This curve
must then represent the motion of which we are in search. It is simply the thin curve
through X magnified 1-2/5 times vertically, while its horizontal dimensions remain
unchanged. Thus the new motion is a simple harmonic motion having an amplitude
equal to the sum of the amplitudes of the constituent motions, and the same period as
both.
The foregoing instance is only a very special case of the general problem, for the
thin curves in fig. 17 are drawn in a very special way. The crests of the waves of the
two curves occur at the same instants, as also the troughs; in the diagram, crest lies
directly over crest and trough over trough. Vibrations in which this relation holds are
said to be "in the same phase".

Fig. 18. The superposition of two simple harmonic motions of equal period. Here the vibratory
motions (represented by the thin curves) are "in opposite phase"—crest over trough and trough over
crest. The constituent vibrations now pull in opposite directions, and so partially neutralise one
another, the amplitude of their resultant (represented by the thick curve) being equal to the difference
of the amplitudes of the two constituents.

The curves might equally well have been drawn as in fig. 18, the crests of one set of
waves occurring at the same instants as the troughs of the other set. Vibrations in
which this relation holds are said to be "in opposite phase". Crest lies over trough
and vice versa, so that the two constituents produce displacements in opposite
directions. The resultant motion is again that shewn in the thick curve, but its



amplitude is no longer (1 + 2/5) times the amplitude of the larger constituent, but
only (1 - 2/5) times.
We must not, however, expect as a matter of course that two motions which occur
simultaneously will be either in the same, or in opposite, phase. Such simplicity is
unusual, and it is far more likely that the crests of one set of waves will be neither
over the crests nor over the troughs of the other set, but somewhere in between, as
shewn in fig. 19. If we add together the displacements represented by the two thin
curves here, using the method illustrated in fig. 17 (i.e. making ZN = XN + YN, and
so on), we shall find that the resultant motion is represented by the thick curve
shewn in the figure. We may judge by eye that this is yet another simple harmonic
curve, as in actual fact it is, but we can only prove this by a new method of attack on
the problem, to which we now turn.

Fig. 19. The superposition of two simple harmonic motions of equal period. Here there is no simple
phase relation between the two constituent vibratory motions (represented by the thin curves), but
their resultant is still a simple harmonic motion (represented by the thick curve).

We have seen that any simple harmonic motion can be derived from the steady
motion of a point round a circle. For instance, as the point P moves round the circle
in fig. 16, the point N moves backwards and forwards along the line AB in simple
harmonic motion. The two simple harmonic motions which we now want to
superpose can of course be derived from the motions of two points, each moving
steadily round a circle of its own. Let the two points be P and Q, in fig. 20, so that
the points N, O immediately beneath them execute the simple harmonic motions
with which we are concerned.
At the instant to which fig. 20 refers, the motion of P has produced a displacement
CN, while that of Q, has produced a displacement CO, so that the total displacement,
being the sum of the two, is equal to CO + CN.
To represent this in fig. 20, we start from Q, and draw the line QR in a direction
parallel to CP and of length equal to CP. Then, because QR and CP are parallel and
equal, the length OS which lies directly under QR must be exactly equal to the length
CN which lies directly under CP. Hence the sum we need, namely CO + CN, must
be equal to CO + OS, and so to CS.



Fig. 20. The superposition of two simple harmonic motions. As P and Q move round their respective circles, N
and O execute simple harmonic motions. The resultant motion is that executed by S because CO + CN = CS.

Thus as P and Q, move round their respective circles, the points N and O execute the
two constituent simple harmonic motions, and the point S executes the motion which
results from their superposition.
We are at present supposing the two simple harmonic motions performed by N and O
to be of the same frequency, so that the radii CP and CQ, rotate at exactly the same
rate and the angle PCQ, remains always the same. Indeed, we can visualise the
whole motion by imagining that we cut the parallelogram CPRQ out of cardboard,
and then make it rotate round C at the same rate as P and Q. We see that R will move
in a circle at uniform speed, so that S will move backwards and forwards along AB in
simple harmonic motion. This shews that when two simple harmonic motions have
the same frequency, the result of superposing them is a third simple harmonic
motion of the same frequency as both. In terms of music, the simultaneous sounding
of two pure tones of the same pitch produces a pure tone which is still of the same
pitch.

Loudness

The loudness of this sound is a matter of some interest. The resultant vibration has
an amplitude which is represented by the length of the line CR, and this depends not
only on the amplitudes CP, CQ of the constituent vibrations, but also on the angle
between CP and CQ, being large when the angle is small, and vice versa. As we
have already seen, the energy of the sound is proportional to the square of CR, so
that the sound will be loudest when CR is as large as possible, and this occurs when
CP and CQ, lie in the same direction. The parallelogram CPRQ then collapses into a
straight line, and the amplitude CR of the new vibration is simply the sum of the
amplitudes CP and CQ of the constituent vibrations. This is the case, already



illustrated in fig. 17, in which the vibrations are in the same phase; they reinforce
one another continually, and to the fullest possible extent.
The sound will be least loud when CR has its smallest possible value. This occurs
when CP and CQ lie in opposite directions, the amplitude CR then being the
difference of the amplitudes CP and CQ of the two constituents. This is the case,
already illustrated in fig. 18, in which the vibrations are in opposite phase; as they
continually pull in exactly opposite directions, they neutralise one another in the
highest degree possible.
The angle PCQ is equal to zero when the vibrations are in the same phase, and is
equal to 180°, or two right angles, when they are in opposite phase. More usually,
the angle PCQ will have some intermediate value, and we say that the vibrations
have a "phase difference" PCQ, or more precisely that the phase of Q is PCQ behind
that of P. This case has been illustrated graphically in fig. 19.

Interference of Sound

Our first result has shewn that if we could arrange for two notes to be sounded in
exactly equal strength and in exactly the same phase, their resultant would have
double the amplitude of either, and so would have four times the energy of either of
its constituents. This means that each note would give out double as much energy in
combination as when sounded alone, and it might seem at first sight that power
could be gained by subdividing our vibrating mechanism into smaller units—using,
for instance, two weak organ-pipes of the same pitch instead of one powerful pipe of
double the strength of either. But this is not so—nature never gives us something for
nothing, although she may seem to give us nothing for something.
In actual fact, if two similar organ-pipes are put side by side on the same wind-chest
and blown together, the sound we hear will not have four times the energy of that
produced by a single pipe; indeed if the mouths of the two pipes face one another,
we shall hear little more than a sound of rushing air. Yet if we place a feather near to
the lip of either pipe, it will flutter as strongly as if the pipe were being blown alone
and producing its usual musical note. If we put one end of a rubber tube near to the
lip of either pipe, and the other end in our ear, we shall find that the pipe is in actual
fact emitting its usual musical note.
The explanation of the apparent paradox is as follows. As soon as the air in the first
pipe starts its vibrations, the outflow of air from the mouth of the pipe creates an
excess of pressure which tends to drive air into the mouth of the other pipe, or vice
versa. Thus the pipes tend to get into such a condition that the air which streams out
of one tends to stream into the other. In this way their vibrations get into opposite
phases at the very outset, and when the vibrations are in opposite phases, their
resultant is a new vibration of an amplitude which is equal, not to the sum of the
amplitudes of the separate vibrations, but to their difference, i.e. nil. The pipes are



accordingly said to "destroy one another's speech". In practice, the organ-builder will
put two similar pipes as far apart as is conveniently possible, so as to reduce their
mutual interference to a minimum.
The two prongs of a tuning-fork behave in somewhat the same way. They may be
regarded as two separate vibrators, and it is easily seen that their vibrations must
necessarily tend to get into opposite phases, and so neutralise one another. Because
of this, a tuning-fork can be made to sound louder by holding a card in such a
position that it prevents the air vibrations streaming off one prong of the fork on to
the other.
At first sight it seems very paradoxical that two sounds can cancel one another in the
way just explained. We are apt to think of a sound as something which produces a
sensation, and it then seems reasonable that if one sound produces a certain
sensation, two sounds must produce twice as much sensation. And this would, of
course, be true if the sounds ever got so far as producing sensation. In actual fact
they cancel one another before getting anywhere near to our ears—instead of each
organ-pipe producing waves of sound which travel through the air to our ears, it
merely produces waves which are sucked in by the other pipe, and vice versa, so that
the auditory nerves need experience no sensation at all. Similar considerations apply
to the case of two strings lying side by side and stretched so as to sound the same
note, and explain why three strings to each note of the piano are better than two.

Beats

Let us next examine the result of sounding together two tuning-forks which are
nearly, but not quite, in tune, so that the two simple harmonic vibrations which are to
be superposed are nearly, but not quite, of the same frequency. We can represent this
by imagining P and Q in fig. 20 (p. 42) to move round their respective circles at
slightly different rates. In order to have a definite problem before us, let us suppose
that P makes 520 complete revolutions a second, while Q makes 522. Then Q makes
two complete revolutions more than P every second, and so is continually gaining on
P, just as the minute-hand of a clock continually gains on the hour-hand. Because of
this the angle PCQ is continually changing, and the parallelogram CPRQ will no
longer rotate about C like a rigid structure. In the position shewn in fig. 20, it is
closing up, so that soon CP and CQ will coincide in direction. When this occurs, the
two simple harmonic vibrations will be in the same phase, and the amplitude of the
resultant vibration will be CQ + CP. After this the angle opens out again until, a
quarter of a second later, CP and CQ point in exactly opposite directions. The two
simple harmonic vibrations are now in opposite phase, so that the amplitude of the
resultant is CQ - CP. Yet another quarter second later, and the constituent vibrations
are again in the same phase, with a resultant once more of amplitude CQ + CP. Thus
the resultant is a simple harmonic vibration whose amplitude continually varies
between the limits CQ + CP and CQ - CP.



If the amplitudes CP and CQ are exactly equal, the amplitude of the resultant
disappears completely at the instants when the constituents are in opposite phase, so
that the sound we hear consists of pulses of sound which occur regularly every half
second, interleaved with moments of complete silence.
If the amplitudes CP and CQ are not exactly equal, the amplitude of the resultant
sound continually fluctuates. Some sound can always be heard, but its loudness rises
and falls, and this endows it with a wavy quality. The moments of maximum sound,
or sometimes the whole intervals from minimum to minimum of the sound, are
described as "beats".
In the particular experiment just described, the number of beats a second will be 2,
because 522-520=2. If the two notes had been twice as far out of tune—say of
frequencies 524 and 520—we should have had four beats a second, and so on. The
more out of tune the notes are, the more frequent the beats. When a tuner is bringing
two strings of a piano or two pipes of an organ to the same pitch, he must tune until
the beats can no longer be heard at all. Under the best conditions beats as slow as
one in 30 seconds can be heard.

Cases such as those just mentioned, in which there are only two or four beats to the
second, do not usually produce an unpleasant sound. Indeed certain registers of the
organ, such as the "voix celeste" and the "unda maris", produce the effect
deliberately by the device of each note having two pipes, which are purposely put
sufficiently out of tune with one another to give two or three beats a second. The
voix celeste is usually constructed of string-toned pipes. Its fantastic name
notwithstanding, it attempts to represent the slightly undulating sound heard when
the strings of an orchestra play in unison; the undulations arise in part from the
"beats" which must necessarily occur since the instruments can never be in perfect
tune with one another, but in still greater part from a more subtle cause which we
shall discover when we study violin tone in detail (p. 102, below). The still more
fantastically named unda maris usually consists of flute-toned pipes, and bears some
resemblance to voices singing in attempted but imperfect unison. These undulations
of sound endow organ tone with a certain quality of life and motion which is
otherwise wanting.
Most ears find the sound of these stops agreeable, at any rate in the upper half of the
keyboard; the stops seldom go below tenor C because the beats become less pleasant
in the bass octave. Indeed it is a general rule that beats sound unpleasant when the
number of beats per second is comparable with the frequency of the main tone. For
instance, a 16-foot organ-pipe CCC gives 33 vibrations a second, while the adjacent
CCC♯ pipe gives 35 vibrations a second. Thus if a 16-foot pedal-stop is drawn and
the two bottom keys are depressed simultaneously, we hear two beats a second, and
find the effect very unpleasant to the ear. If CCC and DDD are sounded together, we
hear four beats a second, with still more unpleasant results.



To explore this effect more thoroughly, let us take a tuning-fork of frequency 261
(middle C of the piano) and sound with it in succession a series of forks of gradually
ascending frequencies, say 262, 264, 266, 268, 270, and so on. With the 262 fork we
hear one beat a second, and the effect is not unmusical, although the beats may be a
bit irritating by their slowness. The next fork, of frequency 264, will give three beats
a second, and the effect is still not unpleasing. The next fork, 266, with five beats a
second, produces a distinctly less pleasant result, sounding more hurried and less
musical, and this unpleasantness continually increases, until we reach the fork 284
which gives 23 beats a second. We can still recognise the beats as such, but their
effect has become highly unpleasant—a confused jangle of hurried sound rather than
a musical note. After this the beats remain audible for a time, but their
unpleasantness diminishes. By the time we reach the fork 320 or thereabouts, the
individual beats can no longer be distinguished, but the sound is still unpleasant. The
beats do not return again, no matter how high we push the pitch of the second fork.
We shall discuss the meaning of all this later (p. 153); in the meantime the following
table gives the result of experiments made by Mayer and Stumpf with the object of
discovering the greatest number of beats which can be heard with pure sounds of
different pitch. In these experiments fork I is made to sound continuously, while fork
II is continually raised in pitch. The experimenter notices (a) the number of beats at
which the sensation is most unpleasant and (b) the greatest number of beats which
can be heard—i.e. the point beyond which beats can no longer be heard.

Frequency of
fork I

No. of beats per second at which
Interval in semitones
until beats disappearbeats are most

unpleasant
beats can no

longer be heard
96

256
575

1707
2800
4000

16
23
43
84

106
—

41
58
107
210
265
400[B]

6
4
3
2
1.5
1.6

The unpleasantness seems to arise in part from the mental irritation of trying to
follow a succession of abrupt and rapidly repeated changes, and in part from the
purely physical irritation produced by a succession of rapidly alternating stimuli. It is
rather like the irritation we experience when watching a flickery cinematograph film.
If the pictures follow one another at the rate of one per second, we feel no irritation,
because the eye has ample time to adjust itself to each picture before this gives way
to its successor. But this is not so when there are ten pictures to the second; we then
get eye-strain and headache from the effort of trying to follow. If there are as many
as twenty pictures to the second, the sequence merges into a continuous stream, and
irritation gives place to satisfaction.



Difference and Summation Tones

Finally, let us examine the result of superposing two pure tones which are entirely
out of tune, i.e. two simple harmonic vibrations of widely different frequencies. To
make the problem definite, let us suppose that their frequencies are 600 and 800.
Then we may suppose that in fig. 20 the directions of CP and CQ coincide at the
start, and that P and Q rotate round their circles of reference at the rate of 600 and
800 revolutions a second respectively, so that Q passes and overtakes P 200 times
every second. Each time that this happens, conditions are precisely the same as when
the motion started, so that the motion repeats itself 200 times every second, and so
shews a regular periodicity of frequency 200. Had this frequency been sufficiently
low, the periodicity would have been audible in the form of beats. Although it is too
high to be heard in this way, the periodicity is still latent in the mathematics of the
problem, and, under conditions which we shall explore later, it may become audible
as a "difference tone"—a tone whose frequency is the difference of the frequencies
of the two tones which are superposed (p. 234).
From the point of view of obtaining a faithful representation of simple harmonic
motion, it is a matter of complete indifference whether the moving point moves
round the circle of reference in one direction or the other. Thus we can equally well
represent the two motions which are to be superposed by supposing that in fig. 20 P
and Q move round their circles in opposite directions. With the frequencies we have
taken, they now pass one another 1400 times a second. Thus we see that the motion
which results from superposing the two frequencies of 600 and 800 has latent in it
yet another periodicity of frequency 1400. Under suitable conditions this also may
become audible as a "summation tone" (p. 234).
It must be said at once that this rough-and-ready explanation of difference and
summation tones is incomplete, and in a sense inaccurate. It is only inserted here to
give a preliminary glimpse of an important problem which will be discussed more
fully below (p. 231).

Forced Vibrations

We pass on now to an experiment of a different kind. We take a tuning-fork making
(say) 261 vibrations a second, and fix securely between its two prongs a magnet like
that already used in our telephone receiver (fig. 2), this being wound round with a
wire through which an alternating current can be passed. Each change of the current
in the wire changes the magnetisation of the soft iron, and this now changes the pull
on the prongs of the tuning-fork. Thus the current pulls the prongs of the fork about
to follow its own changes, just as it pulled the diaphragm about on p. 9.

If the fork is stroked with a violin-bow, we shall hear the note c' produced by its 261
vibrations per second. While the vibration is still in progress, let us pass through the



wire an alternating current of some other frequency, say 293 cycles a second. At first
we hear a confused discord of sounds, but very shortly the fork will again be
sounding a pure note. This will no longer be its own note c', but d', of which the
frequency is 293.

Fig. 21. Electrically driven tuning-fork. Instead of the fork being excited by striking or bowing, its prongs are
kept in continuous vibration by a magnet and coil placed between them.

It is easy to see what has happened. The current, pulling the fork about to follow its
own changes compels it to vibrate 293 times a second. At first this vibration is
superposed on to the natural vibrations of the fork, of frequency 261, and produces
32 beats a second—an unpleasant number. As there is nothing at work to maintain
the original vibrations of the fork, these soon die down; on the other hand, the
current and magnet continually supply energy to the vibrations of frequency 293, so
that these are maintained at full strength. After a time they are left alone in the field,
and the fork, although tuned to emit the note c', is heard emitting the note d'. A
vibration of this kind is known as a "forced" vibration, while the vibration which a
vibrator executes when it is set into motion and left to itself is called a "free"
vibration.
Our experiment has illustrated a general principle of physics, which is as follows.
When any vibrator is acted on by a regular periodic force of definite frequency, it
may at first emit the note corresponding to the frequency of its free vibrations, but
will soon settle down and emit the note whose frequency is that of the forcing
agency. The free vibrations are transitory, but the forced vibrations are permanent.
It is easy to find applications of this principle. Our wireless sets have any number of
free vibrations—we can set them all going by hitting the set in various places with a



hammer—yet when we pass the ordinary alternating current of 50 cycles a second
through the set, we only hear a steady hum, whose pitch corresponds to a frequency
of 50. In the same way the telephone diaphragm which we employed in our first
experiment (p. 9) has its own free vibrations, yet it only emits the musical note or
sound which is being conveyed by the current in the wire.
To extend our experiment, let us suppose that the frequency of our alternating
current can be altered at will. It has so far stood at 293; let us gradually lower it. As
it drops, the pitch of the note we hear drops with it, passing from d' through c♯', c',
B, B♭, and so on. This is not remarkable, but another feature is. For as the pitch falls,
we hear the note getting steadily louder, until by the time it has reached c', the pitch
of the free vibrations of the fork, it has become intensely loud. After it has passed
beyond c', it becomes continually softer until finally it is inaudible.

Resonance

This last experiment provides a simple instance of a very general physical principle,
known as the "Principle of Resonance". This may be stated as follows: the amplitude
of a forced vibration increases as the period of the vibration approaches that of a free
vibration of the vibrating system, and becomes very large when the two periods
exactly coincide.
We shall best understand the meaning of the principle by studying a simple
application of it—the ringing of a heavy church-bell.
A big bell is usually so heavy that the bell-ringer cannot hope to set it ringing by a
single pull on his rope. He accordingly pulls the bell-rope with the strongest pull he
can comfortably manage, and then lets go. The bell then begins to swing, somewhat
like a pendulum in simple harmonic motion and, as it swings, the bell-rope moves up
and down. By the time the bell has performed a complete swing, the rope has
returned to its original position, and is moving downwards. The bell-ringer now
gives it another pull, thereby superposing a new simple harmonic motion in the same
phase as the original motion, and so causing the bell to swing more violently. The
ringer repeats the process time after time. In so doing, he is in effect applying to the
bell a periodic force, of period exactly equal to that of the free oscillations of the
bell. This superposes new oscillations that are all in the same phase as the original
oscillation, and so repeatedly increase the amplitude of this oscillation, until the bell
is ringing with as much vigour as the bell-ringer desires. The effect is much the same
if the ringer pulls on the rope at any instant whatever of its downward motion; on the
other hand, if he were to pull on the rope during its upward motion, he would be
adding a new oscillation in such a phase as to diminish the amplitude of the original
oscillation, and by a repetition of this process he could bring the bell to rest.
Another instance of resonance is provided by the rolling of a ship in a cross sea.
Each wave that strikes against the ship's side sets up a roll, and if the waves come at



all regularly they may "force" a roll of considerable amplitude. The roll will have the
same period as the waves, and if this period chances to coincide with the free period
of the ship for rolling, the situation may become one of great danger.
We find another example of the principle of resonance in the suspension bridge. A
suspension bridge is capable of swinging to and fro like a pendulum, so that it forms
a vibrating structure, and may happen to have a free period near to that of a man's
step. If so, a man walking across the bridge with a steady step may set up forced
oscillations of quite large amplitude, while a body of men marching in step may set
up oscillations violent enough to endanger the safety of the bridge. As there are
cases on record of bridges being destroyed in this way, troops are ordered to break
step when they come to a suspension bridge.
Again, a tumbler or wine-glass has its own very definite periods of free vibration, for
on drawing a wet finger round the rim we hear a clear musical note, the pitch of
which can be varied by putting more or less water into the glass. A singer can set the
glass into vibration by singing this particular note near to it, and the more perfectly
his voice is in tune with the glass, the more violent its vibrations will be. If he can
sing loudly and truly enough, he may be able to shatter the glass into fragments.

The same effect may be noticed in a less agreeable form when a musical instrument
sets furniture, ornaments and windows in a room into vibration. A particular note of
a piano may often cause a disagreeable jangle of sound in one particular part of the
room; we can usually trace this to some object which has a free vibration of the same
frequency as the note in question.
To take yet another instance, the diaphragm of the loudspeaker of a radio set has its
own frequencies of free vibration, and care must be taken that these shall not
coincide with the frequencies of any of the sounds to be transmitted—otherwise
these sounds would be heard in intolerable strength, as of course they sometimes are.
Similar remarks apply to the telephone receiver. In both these cases very drastic
measures are taken to ensure that no particular tones shall be unduly reinforced by
resonance (see p. 240, below).
These examples may have seemed to suggest that the principle of resonance is a
great nuisance, as indeed it often is. At the same time, it can be of very great
assistance in solving the practical problems of science. If we blow across the open
end of a key or a metal tube, we hear a distinct musical note, the pitch of which
indicates the frequency of the free vibrations of the air inside the tube. Any musical
note of this same frequency will accordingly set the air inside the tube into vibration
by resonance. Helmholtz used to employ a number of glass vessels of such sizes and
shapes that their free vibrations had the same frequencies as the notes of the musical
scale. Each vessel had a small tube or spout protruding, and by placing this into or
close to the ear, it was possible to tell whether the air inside was in vibration or not,
so that the pitch of a musical note could be determined by observing which vibrator



was set into resonance by it. Such vessels are commonly known as "Helmholtz
resonators".
The wires of a piano can be used for the same purpose. If we raise the dampers by
depressing the pedal, each string becomes a resonator, and will be set into vibration
whenever a note is sounded whose pitch coincides with, or is near to, its own. The
more closely the two pitches coincide, the more violent the vibrations will be. The
vibrations can be made visible by putting tiny shavings of wood bent to a ʌ-shape
astride across the wires. When any wire is set into vibration, the chips lying on it
begin to dance about, and quite moderate vibrations will unseat them altogether. Or,
better still, we may lay fine unbent chips across the wires in directions at right angles
to their lengths. When the wires of any note are set into even slight vibration, the
chips lying across these particular wires begin to turn round and finally drop
between the wires. The constituents of a chord, or other composite sound, can be
discovered by placing fine chips over all the wires and noticing which of them fall
through.

Sound Analysis

Instruments have recently been designed which analyse complex sounds with far
more sensitiveness and accuracy than is possible with the simple methods just
described. The action of such instruments is best explained through their analogy
with an ordinary radio receiving set. If the set is switched on, and the tuning-knob
turned through the whole range of wave-lengths, we hear alternations of sound and
silence. We may, for instance, hear loud sounds when the tuning-dial indicates wave-
lengths of 1500 metres (200 kilocycles) or of 342.1 metres (879 kilocycles), fainter
sounds at various other wave-lengths, and so on.
The reason for this is as follows. The set contains an electric oscillator, and the
frequency of the free vibrations of this oscillator is not fixed, but changes when the
tuning-knob is turned. When the tuning-dial shews 1500 metres or 200 kilocycles,
the oscillator has a frequency of 200,000 cycles a second, and so is in perfect
resonance with any electromagnetic waves of frequency 200,000 cycles a second
which may be falling on the aerial. Because of this resonance, the sounds carried by
waves of this particular frequency are heard loud and clear. Those carried by other
waves are not heard because these waves are not in resonance with the oscillator, and
so do not set up appreciable oscillations in it; their turn comes when the tuning-dial
points elsewhere. Used in this way the set can be made to analyse the
electromagnetic waves which fall on its aerial, sorting them out according to their
frequencies and informing us as to their strength.
In the same way the modern sound analyser contains a sound resonator, the
frequency of which can be varied continuously. If it is run through its range of
frequencies in the presence of a composite sound, the air inside it will be set in



agitation at some frequencies and not at others. The former frequencies must then be
present in the sound, the latter not. The strengths of the various components can be
recorded by electrical means.
Finally, the principle of resonance provides us with the means of sustaining a pure
musical tone for as long as we wish. The apparatus is known as an "electrically
maintained" tuning-fork, and is simply that which has been already described on p.
53, a fork in which vibrations can be "forced" by an intermittent or alternating
current. On making the period of the current coincide with that of the fork, the latter
gives out a loud pure note which can be prolonged indefinitely.



[A]

[B]

FOOTNOTES:
If the fork was struck very violently in the first instance, there may be a very slight

sharpening of pitch as the vibrations become of more usual intensity.

This is the number given by Stumpf; Helmholtz had previously found a limit of only
276 beats, or 1.1 semitones.



 CHAPTER III
THE VIBRATIONS OF STRINGS AND HARMONICS

We began our study of sound-curves by examining the curve produced by a tuning-
fork. A tuning-fork was chosen, because it emits a perfectly pure tone. But, as every
musician knows, its sound is not only perfectly pure, but is also perfectly
uninteresting to a musical ear—just because it is so pure.
The artistic eye does not find pleasure in the simple figures of the geometer—the
straight line, the triangle or the circle—but rather in a subtle blend of these in which
the separate ingredients can hardly be distinguished. In the same way, the painter
finds but little interest in the pure colours of his paint-box; his real interest lies in
creating subtle, rich or delicate blends of these. It is the same in music; our ears do
not find pleasure in the simple tones we have so far been studying but in intricate
blends of these. The various musical instruments provide us with ready-made blends,
which we can combine still further at our discretion.
In the present chapter we shall consider the sounds which are emitted by stretched
strings—such as, for instance, are employed in the piano, violin, harp, zither and
guitar—and we shall find how to interpret these as blends of the pure tones we have
already had under consideration.

Experiments with the Monochord

Our source of sound will no longer be a tuning-fork but an instrument which was
known to the ancient Greek mathematicians, Pythagoras in particular, and is still to
be found in every acoustical laboratory—the monochord.



Fig. 22. The monochord. The string is kept in a state of tension by the suspended weight W, while
"bridges" like those of a violin limit the vibration to a range BC. The instrument is arranged so that
both range and tension are under control.

Its essentials are shewn in fig. 22. A wire, with one end A fastened rigidly to a solid
framework of wood, passes over a fixed bridge B and a movable bridge C, after
which it passes over a freely turning wheel D, its other end supporting a weight W.
This weight of course keeps the wire in a state of tension, and we can make the
tension as large or small as we please by altering the weight. Only the piece BC of
the string is set into vibration, and as the bridge C can be moved backwards and
forwards, this can be made of any length we please. It can be set in vibration in a
variety of ways—by striking it, as in the piano; by stroking it with a bow, as in the
violin; by plucking it, as in the harp; possibly even by blowing over it as in the
Aeolian harp, or as the wind makes the telegraph wires whistle on a cold windy day.
On setting the string vibrating in any of these ways, we hear a musical note of
definite pitch. While this is still sounding, let us press with our hand on the weight
W. We shall find that the note rises in pitch, and the harder we press on the weight,
the greater the rise will be. The pressure of our hand has of course increased the
tension in the string, so that we learn that increasing the tension of a string raises the
pitch of the note it emits. This is the way in which the violinist and piano-tuner tune
their strings and wires; when one of these is too low in pitch, they screw up the
tuning-key.
A series of experiments will disclose the exact relation between the pitch and the
tension of a string. Suppose that the string originally sounds c'(middle C), the
tension being 10 lb. To raise the note an octave, to c", we shall find we must increase
the tension to 40 lb.; to raise it yet another octave to c‴, we need a total tension of
160 lb., and so on. In each case a fourfold increase in the tension is needed to double
the frequency of the note sounded, and we shall find that this is always the case. It is
a general law that the frequency is proportional to the square root of the tension.

We can also experiment on the effect of changing the length of our string, repeating
experiments such as were performed by Pythagoras some 2500 years ago. Sliding
the bridge C in fig. 22 to the right shortens the effective length BC of the string, but
leaves the tension the same—that necessary to support the weight W. When we
shorten the string, we find that the pitch of the sound rises. If we halve its length, the
pitch rises exactly an octave, shewing that the period of vibration has also been
halved. By experimenting with the bridge C in all sorts of positions, we discover the
general law that the period is exactly proportional to the length of the string, so that
the frequency of vibration varies inversely as the length of the string. This law is
exemplified in all stringed instruments. In the violin, the same string is made to give
out different notes by altering its effective length by touching it with the finger. In
the pianoforte different notes are obtained from wires of different lengths.
We may experiment in the same way on the effect of changing the thickness or the
material of our wire.



Mersenne's Laws

The knowledge gained from all these experiments can be summed up in the
following laws, which were first formulated by the French mathematician Mersenne
(Harmonie Universelle, 1636):
I. When a string and its tension remain unaltered, but the length is varied, the period
of vibration is proportional to the length. (The law of Pythagoras.)
II. When a string and its length remain unaltered, but the tension is varied, the
frequency of vibration is proportional to the square root of the tension.
III. For different strings of the same length and tension, the period of vibration is
proportional to the square root of the weight of the string.
The operation of all these laws is illustrated in the ordinary pianoforte. The piano-
maker could obtain any range of frequencies he wanted by using strings of different
lengths but similar structure, the material and tension being the same in all. But the
7¼ octaves range of the modern pianoforte contains notes whose frequencies range
from 27 to 4096. If the piano-maker relied on the law of Pythagoras alone, his
longest string would have to be more than 150 times the length of his shortest, so
that either the former would be inconveniently long, or the latter inconveniently
short. He accordingly avails himself of the two other laws of Mersenne. He avoids
undue length of his bass strings by increasing their weight—usually by twisting
thinner copper wire spirally round them. He avoids inconvenient shortness of his
treble strings by increasing their tension. This had to be done with caution in the old
wooden-frame piano, since the combined tension of more than 200 stretched strings
imposed a great strain on a wooden structure. The modern steel frame can, however,
support a total tension of about 30 tons with safety, so that piano-wires can now be
screwed up to tensions which were formerly quite impracticable.

The Free Vibrations of a String

Having found or verified these laws, we may pass to a slightly more complicated
experiment, known as Melde's experiment. We remove the bridge B and the
fastening at A altogether, and replace our wire by a fine string or thread of silk. One
end of this still passes over the wheel D and supports the weight W, but its other end
is fastened to one prong of a tuning-fork, so that the apparatus now looks like that
sketched in fig. 23.
We can set the length AC of the string into vibration by bowing it with a violin-bow,
in which case it will of course execute its own free vibrations, and we shall hear a
faint musical note—the note of the string. But we can also set the string into
vibration by bowing the tuning-fork. This now performs its own free vibrations, and
transmits its motion to the string, so that this will execute "forced" (p. 52) vibrations



of the same frequency as those of the fork. We now hear the note of the fork, and this
will usually be different from that of the string previously heard. If, however, the two
happen to be of the same pitch, there will be resonance (p. 55) between the fork and
the string. The vibrations of the latter will now be exceptionally violent, and visible
to the eye.

Fig. 23. The monochord arranged for Melde's experiment.

If we experiment with a whole series of forks, or with an electrically driven fork of
which the pitch can be varied, we shall find that there is not only one pitch of fork,
but a whole series of pitches, for which the vibrations of the string become so violent
as to be visible. At each of these pitches, there must be resonance between the fork
and string, so that the string must have a free vibration corresponding to each; the
experiment discloses the frequencies of the free vibrations of the string.
We find that the frequencies of these free vibrations are all multiples of the same
number. For instance, if the deepest pitched fork which produces resonance has a
frequency of 256, the frequencies of the other forks will be 512, 768, 1024, etc.,
these being respectively twice, three times, four times, etc. the original number 256.



Figs. 24, 25 and 26. Characteristic vibrations of a stretched string. The string vibrates in one, two and three equal
parts respectively, and emits its fundamental tone, the octave and the twelfth of this, in so doing.

The string assumes different appearances when it is set in vibration by these
different forks. The fork of lowest pitch, of frequency 256, causes it to look as in fig.
24; the next, of frequency 512, gives it the appearance shewn in fig. 25; that of
frequency 768 the appearance of fig. 26, and so on. The fork whose frequency is
thrice that of the fork of lowest pitch makes the string vibrate in three separate equal
parts, and so on throughout. Thus the periods of the various free vibrations are in
every case proportional to the lengths of the string which are in separate vibration, in
accordance with the law of Pythagoras.
However often we perform our experiments, we shall find no free vibrations other
than these, and it is easy to see that there can be no others.



Figs. 27 and 28. A possible position (fig. 27) and an impossible position (fig. 28) for a vibrating string.

For suppose that the string could vibrate separately in two parts which formed two-
fifths and three-fifths respectively of the whole, as in fig. 27. Then the periods of
these two vibrations would be proportional to the lengths of the separate parts, by the
law of Pythagoras, and so would be in the ratio of 2:3. After the part BC of the string
had performed a complete vibration, it would be back in the position shewn in fig.
27, but at this instant the part AB would have performed 1½ vibrations, and so would
be in the position shewn in fig. 28. We see at once that this is an impossible position
for a string which is fixed only at A and C. It would be possible if the string were
fixed also at B, but then there would be a pull on the fastening at B. Without such a
pull, the point B of the string would have been drawn upwards before the string had
reached the configuration shewn in fig. 28, so that the string cannot possibly be in
such a configuration.
This only proves the result for one particular case, but it is easy to see that the
principle is universally true. To avoid an impossible kink like that shewn in fig. 28,
the vibrations of the different segments of the string must keep exactly in step, and
so must have precisely the same period. This means that the separate vibrating
segments must all be of the same length, which limits us to the vibrations we have
already discovered.

Waves travelling along a String

Let us now repeat the experiment in a somewhat different form, replacing the thread
by a more massive string or rope, and the tuning-fork by our hand. We hold the free
end of the string in our hand, and very slowly raise it. The whole string of course
follows and assumes a slanting position; we slowly lower our hand again, and the
string resumes its horizontal position. Suppose, however, that we now speed up our
tempo, and raise and lower our hand by rapid jerks. The inertia of the string now
comes into play, with the result that the first motion sends a sort of wave of elevation



along the string, while the second sends a wave of depression which follows the
former at a short interval—at one instant the rope may stand as in the thick line in
fig. 29; at a later instant it will lie as shewn by the dotted line. As each wave reaches
the wheel, it is reflected back along the string. A wave travels along the string much
as a ripple travels along the surface of a pond, and is reflected at the immovable end
much as the ripple is reflected by a stone wall.

Fig. 29. The passage of a single wave along a stretched string.

We are now able to see what happened in Melde's experiment, which we have just
performed. In place of our hand we had the prong of a tuning-fork, and instead of
moving up and down only once, this moved up and down repeatedly and regularly. It
did not send one single wave travelling along the wire, but a whole succession at
regular intervals, and these, together with the reflected waves, must have given the
motion we observed in Melde's experiment.
This latter was, however, one or other of the free vibrations of the string, whence we
see that a free vibration can be represented as the superposition of a series of
travelling waves; these travel in both directions, because we must not overlook the
reflected waves which travel towards the fork. Fig. 30 shews how travelling waves
combine to give the free vibrations.
Thus we may regard the motion of a string in two alternative ways: either as being
made up of a number of free vibrations, or as made up of a number of travelling
waves; these are merely two ways of looking at the same thing.



Fig. 30. A free vibration as the equivalent of two travelling waves. Wave 1 travels to the left, and
wave 2 to the right. In stage I the waves are in exactly opposite phase and so neutralise one another,
the resultant displacement being nil all along the string. After wave 1 has travelled a quarter wave-
length to the left, and wave 2 a quarter wave-length to the right, stage II is reached. The waves are
now exactly in the same phase, and so reinforce one another to the fullest possible extent, their
resultant being as shewn. As the motion proceeds further, the phase difference increases, until it
finally reaches 180 degrees, and the motion is back at stage I.

When we regard the motion in the second way, namely as travelling waves, the law
of Pythagoras—that the period of a free vibration is proportional to the length of the
string which vibrates—admits of a very simple interpretation. The law merely asserts
that all waves travel along the string at precisely the same speed.
The two other laws of Mersenne (on p. 64) now tell us that the speed at which the
waves travel varies as the square root of the tension, and inversely as the square root
of the weight, of the string. It is, indeed, obvious that something of this sort must be
true. For if we increase the tension in the string, we increase the forces tending to



move the string back to its original position, and so speed up the whole motion. If,
on the other hand, we increase the weight of the string, we increase the mass to be
moved by these forces, and so slow down the whole motion. Similar laws are true,
mutatis mutandis, for every kind of wave-motion.

Harmonics

We have seen that, when any structure whatever is in a state of vibration, its motion
can be regarded as the superposition of a number of separate free vibrations.
When any one of these vibrations is performed alone, every particle of the vibrating
structure moves in simple harmonic motion—in the same way, that is, as a particle
of our tuning-fork. It follows that if musical sounds are produced by the different
vibrations, these must be all pure tones of the kind discussed on p. 17; in other
words, each could be produced by the free vibrations of a tuning-fork.
In the special case we have just been discussing, in which the vibrating structure is a
stretched string, the frequencies of the different vibrations stand in the simple ratio
1:2:3:4:..., so that the whole sound produced by the vibrations of the string could be
produced by the simultaneous vibrations of a whole battery of tuning-forks, whose
frequencies were in the ratio 1:2:3:4:.... We begin to see why the sound of a violin or
a piano is richer, and so more interesting, than that of a tuning-fork.
Theoretical considerations have shewn us that tones of all these frequencies and no
others will be sounded when our string is played, and by using a set of Helmholtz
resonators or a sound analyser of the kind described on p. 59, we can verify that this
is the case. For instance, if a violin is made to sound c' (middle C) of frequency 256,
resonators of frequencies 256, 512, 768, 1024, 1280, etc. will be set into vibration by
resonance, the others not.
Or we may use the strings of a piano as resonators (p. 58). We raise the dampers by
depressing the pedal and play on a violin the note c', tuned to the c' of the piano. We
naturally find that the piano-wires of the note c' are set into vibration by resonance,
but we shall find that the wires of the following notes are also vibrating: c", g", c‴,
e‴, g‴, b♭‴, civ, etc. Referring to the table on p. 27, we find that these notes have the
frequencies given in the second line of the table below, the frequencies of the
vibrations of the violin-string being those given in the third line:

Piano note c' c" g" c‴ e‴ g‴ b♭‴
Frequency 256 512 767 1024 1290 1534 1825 20
Frequency
of string 256 512 768 1024 1280 1536 1792 20

Number
of

1 2 3 4 5 6 7



harmonic

Of the various tones sounded by the vibrating string, that of lowest frequency—256
in the present case—is called the "foundation tone" or "fundamental tone" of the
string, while the whole series of pure tones which are blended in the sound of the
string are called "harmonics". The fundamental tone is described as the first
harmonic, the tone of the frequency next above is the second harmonic, and so on.
The table on p. 73 shews that the second harmonic is the octave of the fundamental,
while the fourth harmonic is the super-octave or fifteenth. The third harmonic does
not coincide exactly with the twelfth g"—and herefrom arises a complication which
will require much discussion in a subsequent chapter—but for our present purpose it
is near enough, and we may say that the third harmonic is the twelfth of the
fundamental note. To the same degree of approximation the fifth harmonic is the
seventeenth, the sixth harmonic is the nineteenth, and so on.

Using the piano as a resonator, we can verify not only the frequencies of these
various harmonics, but also the nature of the vibrations by which they are produced.
We have already seen, for instance, that when we strike c' on the piano, the strings of
c", g", c‴, etc. are all set vibrating through resonance, shewing that the c' strings have
free vibrations with the frequencies of all these higher tones. Let us now reverse the
experiment, and strike c" on the piano. As the c' strings have free vibrations of the
same frequency as the note now sounding, they will be set in vibration, and if we
have laid small chips of wood across them in the way already explained, these chips
will fall off. But if one of these small chips happens to be just half-way along the
string, this particular chip will not fall off. All the others fall off, but this does not,
shewing that the string is vibrating everywhere except here. In fact the string has
exactly the motion shewn in fig. 25 (p. 67); it is vibrating in two equal parts. In the
same way we can verify that striking g" causes the strings of c' to vibrate in three
equal parts in the way shewn in fig. 26, and so on indefinitely.

Nodes and Loops

If we could take an instantaneous photograph of a string while it was performing any
one of its free vibrations alone, we should find that its shape at any instant is a "sine
curve" or a "simple harmonic curve" of the kind described on p. 28. It can, indeed,
be proved by rigorous mathematics that this must be the case, provided only that the
string is perfectly flexible and is formed of uniform material throughout.

Fig. 31. The curve formed by a string performing one vibration alone is always a simple harmonic curve.



The distance by which any particle of the string is displaced from its normal position
P, such as PQ in fig. 31, is called the displacement at P. As we pass along the string,
the amount of this displacement continually waxes and wanes. The points at which it
is zero, i.e. where the string does not move at all, are known as nodes. Obviously the
ends of the string, or any other points at which it is securely fastened, must be nodes
(nodus = a knot), and the remaining nodes, as we have seen, lie evenly spaced
between these two end nodes. The points at which the displacement is a maximum
are known as antinodes or loops; these lie evenly spaced between the nodes.
Touching the string at a node of its vibration produces no effect, because the string
has no motion there; if, however, we touch it at any point except a node, we kill the
vibration. If it is not merely performing a single vibration, but vibrating in any other
way, a touch will kill all the vibrations except those for which the point of contact is
a node. For instance, if we touch the c' string of a piano at its middle point while it is
vibrating, we silence the tones c', g", e‴, etc., but leave it sounding c", c‴, g‴, etc.,
because the middle point of the string is a node for all even-numbered harmonics.
Violinists are accustomed to produce harmonics in a similar way, by lightly touching
the string at the appropriate nodes.

String Tone

We have now seen that when we play c' on the violin or piano we are in effect
playing the chord of pure tones which is shewn on the right of fig. 32; this will
obviously sound fuller, brighter and richer than the pure note of the tuning-fork
shewn on the left.

Fig. 32. The tuning-fork only sounds single pure tones. A single note of the violin, on the other hand, sounds a
whole chord of pure tones—hence the richness and fullness of good violin tone.

In this diagram, all the harmonics are shewn in equal strength, but in practice the
fundamental tone and the lower harmonics are frequently much stronger than the
others, these becoming progressively weaker as we ascend. Theoretically the chord
ascends to infinity; often in practice harmonics beyond the sixth or seventh are too
weak to affect the ear, so that the note is as shewn above. From the musical point of
view, it is fortunate that this is the case, for many of the higher harmonics—
including all odd-numbered harmonics above the fifth—form a dissonance with the
fundamental note.



Fig. 32 refers only to the vibrations of one special structure—the stretched string.
Other structures also have a great number of distinct free vibrations, but their
frequencies are not connected by the simple numerical relations we have just found.
This simplicity is peculiar to the stretched string, although the vibrations of a column
of air, as in a flute or organ-pipe, may approach very near to it. The vibrations of
stretched membranes, as in drums, and of solid structures such as bells, cymbals and
triangles, usually shew no simple relations between their frequencies, so that the
sounds they emit are generally discordant musically. An instance of this is provided
by the clang tones of a tuning-fork (p. 33).
The discussion which now follows will make it clear why the vibrations of a
stretched string are of such a specially simple and particularly musical nature.

Harmonic Analysis

Several times already we have superposed two simple harmonic curves, and studied
the new curves resulting from the superposition. The essence of the process of
superposition has already been illustrated in fig. 12a on p. 33, and fig. 17 on p. 39. In
each of these cases the number of superposed curves is only two; when a greater
number of such curves is superposed, the resultant curve may be of a highly
complicated form.
There is a branch of mathematics known as "harmonic analysis" which deals with
the converse problem of sorting out the resultant curve into its constituents.
Superposing a number of curves is as simple as mixing chemicals in a test-tube;
anyone can do it. But to take the final mixture and discover what ingredients have
gone into its composition may require great skill.
Fortunately the problem is easier for the mathematician than for the analytical
chemist. There is a very simple technique for analysing any curve, no matter how
complicated it may be, into its constituent simple harmonic curves. It is based on a
mathematical theorem known as Fourier's theorem, after its discoverer, the famous
French mathematician J. B. J. Fourier (1768-1830).
The theorem tells us that every curve, no matter what its nature may be, or in what
way it was originally obtained, can be exactly reproduced by superposing a
sufficient number of simple harmonic curves—in brief, every curve can be built up
by piling up waves.
The theorem further tells us that we need only use waves of certain specified lengths.
If, for instance, the original curve repeats itself regularly at intervals of one foot, we
need only employ curves which repeat themselves regularly 1, 2, 3, 4, etc. times
every foot—i.e. waves of lengths 12, 6, 4, 3, etc. inches. This is almost obvious, for
waves of other lengths, such as 18 or 5 inches, would prevent the composite curve
repeating regularly every foot. If the original curve does not repeat regularly, we



treat its whole length as the first half-period[C] of a curve which does repeat, and
obtain the theorem in its more usual form. It tells us that the original curve can be
built up out of simple harmonic constituents such that the first has one complete
half-wave within the range of the original curve, the second has two complete half-
waves, the third has three, and so on; constituents which contain fractional parts of
half-waves need not be employed at all. There is a fairly simple rule for calculating
the amplitudes of the various constituents, but this lies beyond the scope of the
present book.
We obtain a first glimpse into the way of using this theorem if we suppose our
original curve to be the curve assumed by a stretched string at any instant of its
vibration. Figs. 24, 25 and 26 on p. 67 shew groups of simple harmonic curves
which contain one, two and three complete half-waves respectively within the range
of the string. Let us imagine this series of diagrams extended indefinitely so as to
exhibit further simple harmonic curves containing 4, 5, 6, 7 and all other numbers of
complete half-waves. Then the series of curves obtained in this way is precisely the
series of constituent curves required by the theorem. We take one curve out of each
diagram, and superpose them all; the theorem tells us that by a suitable choice of
these curves, the final resultant curve can be made to agree with any curve we
happen to have before us. Or, to state it the other way round, any curve we please
can be analysed into constituent curves, one of which will be taken from fig. 24, one
from fig. 25, one from fig. 26, and so on.
This is not, of course, the only way in which a curve can be decomposed into a
number of other curves. Indeed, the number of ways is infinite, just as there is an
infinite number of ways in which a piece of paper can be torn into smaller pieces.
But the way just mentioned is unique in one respect, and this makes it of the utmost
importance in the theory of music. For when we decompose the curve of a vibrating
string into simple harmonic curves in this particular way, we are in effect
decomposing the motion of the string into its separate free vibrations, and these
represent the constituent tones in the note sounded by the vibration. As the vibratory
motion proceeds, each of these free vibrations persists without any change of
strength, apart from the gradual dying away already explained. If, on the other hand,
we had decomposed the vibration in any other way, the strength of the constituent
vibrations would be continually changing—probably hundreds of times a second—
and so would have no reference to the musical quality of the sound produced by the
main vibration.

So general a theory as this may well seem confused and highly complicated, but a
single detailed illustration will bring it into sharp focus and shew its importance.

 String Plucked at its Middle Point



Let us displace the middle point of a stretched string AB to C, so that the string
forms a flat triangle ACB as in fig. 33.

Figs. 33 and 34. The string is displaced to form the triangle ACB. This "curve" can be analysed into
the simple harmonic curves shewn in fig. 34. On superposing these we restore the "curve" ACB of fig.
33. (The vertical scales in fig. 34 are all magnified tenfold.)

The shape of the string ACB may still be regarded as a curve, although a somewhat
unusual one, and our theorem tells us that this "curve" can be obtained from the
superposition of a number of simple harmonic curves. In actual fact, fig. 34 shews
how the curve ACB can be resolved into its constituent curves; if we superpose all
the curves shewn in this latter figure, we shall find we have restored our original
broken line ACB, except for a difference in scale; the vertical scale in fig. 34 has
been made ten times the horizontal in order that the fluctuations of the higher
harmonics may be the more clearly seen.
Suppose we now let go of the point C, and allow the natural motion of the string to
proceed. We may imagine each of the curves shewn in fig. 34 to decrease and
increase rhythmically in its own proper period in the way described on p. 71, and the
superposition of the curves at any instant will give us the shape of the string at that



instant. These curves correspond to the various harmonics that are sounded on
plucking a string at its middle point.
We notice that the second, fourth and sixth harmonics are absent. This is not a
general property of harmonics, but is peculiar to the special case we have chosen.
We have plucked the string in such a way that its two halves are bound to move in
similar fashion, and as a consequence the second, fourth and sixth harmonics, which
necessarily imply dissimilarity in the two halves, cannot possibly appear. If we had
plucked it anywhere else than at its middle point, some at least of these harmonics
would have been present.

Analysis of a Sound-Curve

Let us next apply Fourier's theorem to a piece of a sound-curve. The theorem tells us
that any sound-curve whatever can be reproduced by the superposition of suitably
chosen simple harmonic waves. Consequently any sound, no matter how complex—
whether the voice of a singer or a motor-bus changing gear—can be analysed into
pure tones and reproduced exactly by a battery of tuning-forks, or other sources of
pure tone. Professor Dayton Miller has built up groups of organ-pipes, which
produce the various vowels when sounded in unison; other groups say papa and
mama.
The sound-curve of a musical sound is periodic; it recurs at perfectly regular
intervals. Indeed, we have seen that this is the quality which distinguishes music
from noise. Fourier's theorem tells us that such a sound-curve can be made up by the
superposition of simple harmonic curves such that 1, 2, 3, or some other integral
number of complete waves occur within each period of the original curve. If, for
instance, the sound-curve has a frequency of 100, it can be reproduced by the
superposition of simple harmonic curves of frequencies 100, 200, 300, etc.
Each of these curves represents a pure tone, whence we see that any musical sound
of frequency 100 is made up of pure tones having respectively 1, 2, 3, etc. times the
frequency of the original sound. These tones are called the "natural harmonics" of
the note in question.

Natural Harmonics and Resonance

Vibrations are often set up in a vibrating structure by a force or disturbance which
continually varies in strength; such a force may be periodic in the sense that the
variations repeat themselves at regular intervals. Fourier's theorem now tells us that
a variable force of this kind can be resolved into a number of constituent forces each
of which varies in a simple harmonic manner, and that the frequencies of these
forces will be 1, 2, 3 . . . times that of the total force. For instance, if the force



repeats itself 100 times a second, the simple harmonic constituents of the force will
repeat themselves 100, 200, 300, etc., times a second.
If the structure has free vibrations of frequencies 100, 200, 300, etc., these will be set
vibrating strongly by resonance, while any vibrations of other frequencies that the
structure may possess will not be set going in any appreciable strength. In other
words, a disturbing force only excites by resonance the "natural harmonics" of a tone
of the same period as itself.
This, as we shall see later, is a result of great importance to music in general.
Amongst other things, it explains why the stretched string has such outstanding
musical qualities; the reason is simply that its free vibrations coincide exactly in
frequency with the natural harmonics of its fundamental tone, so that when the
fundamental tone is set going, the harmonics are set going as well.

Timbre and the Harmonic Analysis of Sound

By timbre is meant the distinguishing or characteristic quality of a sound; it is by
their timbre that we recognise an instrument, a voice or the quality of an organ-stop,
regardless of the pitch or intensity of the note it is sounding.
The investigations of Helmholtz proved that the timbre of a sound is determined by
the proportions in which the various natural harmonics are heard in it. It is obvious
that something of this kind must be true. We know, for instance, that the more we
hear of the higher harmonics in any sound, the farther we get away from the dull
quality of the tuning-fork, which is characterised by a complete absence of upper
harmonics. Thus we may say that the upper harmonics add life, richness and interest
to the foundation tone. And as they are all at least an octave higher in pitch, they will
obviously add brilliance, and possibly shrillness also.
The detailed effects of the various harmonics are a matter for careful study. There
are several devices which enable us to blend harmonics as we please, and study the
result. On large organs, the choir manual frequently contains stops which sound the
first eight (or even more) harmonics separately, and by combining these in various
ways, sounds of different timbre can be produced, and their harmonic composition
noted. The great manuals of old organs often contained similar selections of stops.
There are also various electrical instruments which permit of the harmonics being
blended in any relative strengths we desire.
In the well-known Hammond electric organ, pure tones are produced by alternating
currents of the appropriate frequencies. Nine such tones can be produced on each
manual key, these representing a selection of the harmonics of the normal note of the
key or of its sub-octaves.[D] The instrument contains no stops in the ordinary sense,
but the presence or absence of the various harmonics, as well as the proportions in
which they enter, are controlled by draw-bars, which can be drawn to any extent



desired. Different blends of harmonics yield different qualities of tone, and ready-
made "prescriptions" for compounding various qualities of tone are supplied with the
instrument. For instance, we are told to take

  
For

string
tone

For open
diapason

tone

For
clarinet

tone

For
reed
tone

Sub-octave to
strength 0 0 0 5

Quint  "       "  0 0 0 5
Fundamental  "       "  1 7 6 5
Octave  "       "  4 7 4 5
Twelfth  "       "  5 5 7 5
Fifteenth  "       "  5 5 0 5
Seventeenth  "       "  5 2 5 5
Nineteenth  "       "  5 2 2 5
Twenty-
second  "       "  5 0 0 5

In whatever way we experiment, we obtain results which are somewhat as follows:
The timbre depends only on the relative energies of the various harmonics and not
on their phase-differences. Differences of phase produce no effect on the ear. This is
known as Ohm's law, having been discovered by G. S. Ohm (1787-1854), the
discoverer of the still better known electrical law.
The second harmonic adds clearness and brilliance but nothing else, it being a
general principle that the addition of the octave can introduce no difference of timbre
or characteristic musical quality. When the second harmonic is of equal strength with
the first, it produces much the same effect as adding the octave-coupler on an organ
or harmonium or playing in octaves, instead of single notes, on the piano.

The third harmonic again adds a certain amount of brilliance because of its high
pitch, but it also introduces a difference of timbre, thickening the tone, and adding to
it a certain hollow, throaty or nasal quality, which we may recognise as one of the
main ingredients of clarinet tone (see opposite, and p. 150, below).
The fourth harmonic, being two octaves above the fundamental, adds yet more
brilliance, and perhaps even shrillness, but nothing more, for the reason already
explained. The fifth harmonic, apart from adding yet more brilliance, adds a rich,
somewhat horn-like quality to the tone, while the sixth adds a delicate shrillness of
nasal quality.
As the table on p. 73 shews, all these six harmonics form parts of the common chord
of the fundamental note, and so are concordant with this note and with one another.



The seventh harmonic, however, introduces an element of discord; if the
fundamental note is c′, its pitch is approximately b♭‴, which forms a dissonance with
c. The same is true of the ninth, eleventh, thirteenth, and all higher odd-numbered
harmonics; these add dissonance as well as shrillness to the fundamental tone, and so
introduce a roughness or harshness into the composite sound. The resultant quality
of tone is often described as "metallic", since a piece of metal, when struck, emits a
sound which is rich in discordant high tones.

Harmonic Synthesis

As the richness and quality of a musical note depend only on the proportions in
which the different harmonics enter, it will be clear that the blending of harmonics to
make a good musical tone is as important as the newspaper advertisements tell us
that the blending of teas and tobaccos is. Let us then try to discover the art of making
our musical instruments blend their own harmonics in such a way as to give us the
particular quality of tone that our musical taste demands. For the moment we are
concerned only with string tone, and the problem before us, stated in the simplest
possible language, is to find out how to set a string vibrating in such a way as to
encourage the harmonics we want, and to suppress the rest.
A result which has already been obtained provides a clue as to the line of attack on
this problem.
We found that when a stretched string is plucked at its middle point, the second and
fourth harmonics are absent from the sound produced, whereas if it is plucked at
some other point, these harmonics are present.
The second and fourth are, however, the harmonics which above all others impart
clearness and brilliance to the tone, so that the note given out by the plucked string
will be deficient in these qualities. It will have a rather hollow, nasal quality,
reminiscent perhaps of the tone of a clarinet or a stopped organ-pipe, since the tones
of both of these consist mainly of odd-numbered harmonics.
This seems to suggest that the quality of tone emitted by a string depends on the
point at which we pluck or strike the string, and harmonic analysis (p. 78) proves
that this is so. It shews that the strength in which any particular harmonic occurs
depends on the product of two distinct factors, which may be described as the
position factor and the ordinal factor. We shall discuss these in turn.
The position factor depends solely on the position of the point at which we pluck or
strike the string. Its value is very easily stated. Let us draw a diagram of the string
performing the vibration corresponding to the harmonic in question, as in fig. 31 on
p. 75. Then when the string is plucked or struck at any point P, the factor in question
is simply PQ2, the square of the displacement PQ. As we pass from a node to a loop,
this factor increases steadily from zero to its maximum value. Thus we can obtain a



harmonic in its fullest possible strength by exciting the string at a loop; we can
eliminate a harmonic altogether by exciting the string at a node.
This is a most important result, of which we have already had an instance (on p. 82).
The middle point of a string is a node for all even-numbered harmonics and a loop
for all odd-numbered harmonics, so that if we excite a string at its middle point, all
the even-numbered harmonics, including the octave, super-octave and all higher
octaves, will be missing from the sound produced (the result already obtained),
while all the odd-numbered harmonics will be present in their maximum strength. In
the same way we see that if we excite the string at a point a third way along its
length, the third harmonic will be missing, but the second (octave) and fourth (super-
octave) will be fairly strong, giving a clear brilliant tone. If we excite the string a
quarter way along, the second harmonic will be heard in full strength but the fourth
will be entirely missing, while the third and fifth will appear, but weakly.
The value of the second or ordinal factor depends on which particular harmonic we
have under consideration, and also on whether the string is plucked or struck.

Plucked String

If the string is plucked, as in a harp, guitar or harpsichord, the ordinal factor is very
simple; it is proportional to the inverse square of the ordinal number of the harmonic
in question. That is to say, if we assign the value 1 to the factor for the first
harmonic, it will be ¼ for the second harmonic, 1/9 for the third harmonic, 1/16 for
the fourth and so on. The factor for the seventh harmonic is 1/49, which is but little
more than 2 per cent., so that harmonics above the sixth contribute very little to the
tone. We have already noticed that the first six harmonics—e.g. c′, c″, g″, c‴, e‴, g‴
—are notes of the common chord, so that the sound of a plucked string will be fairly
free from dissonant harmonics, and therefore almost entirely musical.

Struck String

If the string is struck with a hard sharp hammer, the ordinal factor is even simpler,
for it has the same value for each harmonic. As there are an infinite number of
harmonics, it might be thought that the total energy of the sound produced would
have to be divided equally among this infinite number of harmonics, with the result
that each separate harmonic would get no energy at all. Our mathematical theory
has, however, been based upon the supposition that the string is perfectly flexible.
No string is so in practice, and this want of perfect flexibility exerts a drag on the
highest harmonics of all, and prevents them sounding in their full strength, or even
in any appreciable strength at all. Even so, the number of harmonics which remain to
share the energy in approximately equal shares is still very great, so that the share for
each is very small. Thus the fundamental note and the few lower harmonics get but



little of the total energy, the main bulk of this going into the many higher harmonics.
As most of these are discordant both with the fundamental note and with one
another, the result is a sharp shrill sound of metallic quality (p. 87)—it is, in fact, the
noise we hear if we accidentally drop a key or a coin on to a piano-wire.
The following table exhibits the results just mentioned, and shews the contrast
between the two types of sound we have so far considered:



Distribution of Energy between the various Harmonics of a String

Ordinal
number
of
harmonic

1 2 3 4 5 6 7

Note c′ c″ g″ c‴ e‴ g‴ b♭‴
Energy
when
plucked

1 1/4 1/9 1/16 1/25 1/36 1/49

Energy
when
struck

1 1 1 1 1 1 1

Ordinal
number
of
harmonic

8 9 10 11 12 13 14

Note civ div eiv — giv — b♭iv

Energy
when
plucked

1/64 1/81 1/100 1/121 1/144 1/169 1/196

Energy
when
struck

1 1 1 1 1 1 1

Piano Tone

In the piano the wire is struck with a hammer covered with soft felt. The felt
prolongs the duration of the impact, so that, by the time that the hammer finally
breaks its contact with the string, a substantial length of the string has already been
set in motion. This reduces the energy which goes into the higher harmonics, and so
avoids the harsh jangle of sound represented in the bottom column of the above
table. As we have seen that discord begins with the seventh harmonic, the hammer
should be sufficiently felted to reduce the seventh and higher discordant harmonics
(ninth, eleventh, etc.) to small proportions.
Even if the hammer were perfectly hard, the seventh harmonic could be eliminated
entirely by allowing the hammer to strike the string at a point a seventh of its length
from one end, this being a node for the vibration in question. This would, however,
leave the ninth and eleventh harmonics fairly strong, their positional factors being



0.60 and 0.30 respectively. Or the ninth harmonic could be eliminated by striking the
wire at a point one-ninth along its length, but then the seventh and eleventh
harmonics would each sound with a positional factor 0.41. In practice, the string is
usually struck at about a seventh of its distance from the end, although with a felted
hammer this does not entirely eliminate the seventh harmonic; sometimes a
compromise is attempted between the elimination of the seventh and ninth
harmonics. But no compromise can be found which will of itself reduce both these
harmonics to negligible proportions. The mainstay of the manufacturer must always
be the felting on the hammer, and if this wears thin or hardens too much from
prolonged use, the unwanted upper harmonics will again ring out, giving the piano a
metallic or "tinny" tone. The same effect may be produced if the piano-keys are
struck with undue force, so that the felt on the hammers is much compressed during
its impact on the strings—indeed if we strike with absolutely immense force, every
hammer, no matter how well felted, behaves like a perfectly hard hammer and
produces a mere jangle of metallic tone.
The following table, calculated by Helmholtz, shews the energies of the different
harmonics for a string which is struck with varying degrees of force at a point a
seventh of the length of the string from one end, the force being measured by the
fraction of the period of the fundamental tone for which the hammer is in contact
with the string.

Relative Intensity of Harmonics (striking point one-seventh
from the end)

 
Harmonic

 
 

String
struck with
a perfectly

hard hammer

String struck with a soft
hammer which touches string

for following fraction of period
of fundamental tone

 
String

plucked
 

 
 

 
0.00

       a                  b                  c                 d      
      0.15             0.21             0.3             0.43      

 
 

1 (c′) 100       100              100              100             100 100
2 (c″) 325       286              249              189             100 81
3 (g″) 505       357              243              108                9 56
4 (c‴) 505       260              119               17                 2.3 32
5 (e‴) 325       108               26                   0                1.2 13
6 (g‴) 100         19                 1.3                1.5              0.01 3
7 (b♭‴) 0           0                 0                   0                0 0

We notice that with a soft hammer the fundamental and its octave predominate,
while with a hard hammer the higher harmonics are predominant—an illustration of
the general principles already explained.



For normal playing Helmholtz found that the figures given in column d represented
the tone produced on his piano in the neighbourhood of c″, column c suited the
region of g′, and column b the whole range below middle C. Thus the fundamental
tone is weaker than the second harmonic throughout most of the keyboard, and is
weaker even than the third harmonic through a considerable range.
The more massive hammer of the modern piano strikes the wire with greater speed
than was possible at the time of Helmholtz. Because of this, the fundamental tone
and the lower harmonics can be made considerably stronger than anything shewn in
the above table. Indeed, the highest notes of all contain very few harmonics, the
second harmonic or octave usually being the loudest component. The absence of
high harmonics is no loss here, for they lie beyond the range of the human ear, and
so would be inaudible even if present. The middle notes are a blend of from four to
ten or more harmonics, the energy being fairly well distributed between them. The
lowest notes contain very little of the fundamental tone, but are blends of many
higher harmonics, as many as forty-two having been heard and identified. In extreme
cases the fundamental tone may be entirely inaudible, our ears hearing only the
higher harmonics, which they recombine to reproduce the fundamental in a way to
be explained later (p. 241). Figs. 1 and 2 on Plate III shew two photographs taken by
Professor Dayton Miller of the sound curves of the notes c″ and C of a modern
piano. In the former, the fundamental note c″ is at first the loudest, and indeed
almost the only, component, but after about a fifth of a second the octave appears in
strength, and rapidly becomes the preponderating tone. In the latter, analysis shews
that more than ten harmonics are present in appreciable strength, and continually
change their relative intensities.
Much valuable information can also be obtained by analysing pianoforte tone into its
constituent pure tones in the way explained on p. 59. Figs. 35, 36 and 37 shew the
results of experiments by Erwin Meyer on a variety of instruments, ancient and
modern.



 PLATE III

Dayton C. Miller
Fig. 1. The sound curve of the note c″ (an octave above middle C), frequency 516. The time-scale underneath

shews tenths of a second, starting from the instant at which the hammer first makes contact with the wire.

Dayton C. Miller
Fig. 2. The sound-curve of the note C (an octave below middle C), frequency 129. The time-scale is as in fig. 1.

SOUND-CURVES OF PIANOFORTE TONE



The seven different layers of fig. 35 represent the results obtained from seven c's
(CC-cv) of a modern grand pianoforte. Frequencies are measured on a horizontal
scale as marked, thus being the same for all seven layers. In each layer, the vertical
line marked 1 occurs at the frequency of the note sounded, while 2, 3, etc., occur at
the frequencies of the second, third, etc., harmonics of these notes. Thus these
vertical lines mark the positions of the various harmonics of the note sounded.

Fig. 35. The distribution of harmonics and of continuous sound in a modern grand pianoforte played mf.

The heights of the vertical lines give the relative intensities of these various
harmonics, or rather of such of them as lie within the range of the analyser used in
the experiment. It must, however, be noted that the vertical height is not made
proportional to the sound-intensity as measured by the physical instrument, but to
the logarithm of this intensity, since this, as we shall find below (p. 224), gives a
rough measure of the intensity of the sound as judged by the ear.



Fig. 36. The distribution of harmonics and of continuous sound in a modern grand pianoforte when played pp,
mf, and ff.

We must notice also that these vertical lines do not start at ground level, but from a
sort of undulating mountain of sound, which represents a jumble of tones of all
possible pitches. It is not altogether obvious where all this discordant and unwanted
sound originates. Part of it must represent the difference between the actual piano-
wire—especially the bass wire with thinner copper wire twisted round it—and the
infinitely thin, infinitely flexible, string of abstract theory. A further part can, no
doubt, be traced to the bluntness of the hammer and its coating of felt.
The distribution of sound between the various harmonies must depend (p. 92) on the
strength with which the note is sounded. The results shewn in fig. 35 were all
obtained by sounding different notes mf. Fig. 36 shews the distributions obtained by
playing the same note CC in three different strengths—pp, mf and ff. We notice how
an increase of force on the piano-key results in more harmonics being heard, in
accordance with the principles explained on p. 92, above.



Fig. 37. The distribution of harmonics and of continuous sound in a modern grand piano contrasted with that in
various old-time instruments.

Finally fig. 37 shews the distribution of continuous sound and harmonics obtained
when the same note, now tenor C, is sounded on a variety of instruments. The top
layer of the diagram, which still refers to the grand pianoforte, is merely a
reproduction of the sixth layer in fig. 35; the other three layers refer to various old-
time instruments. We see that all are conspicuously richer than the modern
pianoforte in their higher harmonics, and correspondingly defective in their lower
harmonics.
Many pianists are firmly convinced that they can put a vast amount of expression
into the striking of a single note of the piano: some claim to be able to draw the
whole gamut of emotion out of a single key. In reply, the untemperamental scientist
points out that, in striking a single note, the pianist has only one variable at his
disposal—the force with which he strikes the key; this determines the velocity with
which the hammer hits the wires, and once this is settled, all the rest follows
automatically. It is not, however, a legitimate inference that single notes can differ
only in loudness; differences in the strength of striking will also produce a difference
in the proportion in which the various harmonics enter, and this will naturally alter
the emotional quality of the note. For instance, very hard striking increases the
relative proportion of the upper harmonics and so imparts dissonance and harshness
as well as mere loudness. It seems natural to associate the resulting sound with
anger, disappointment or despair. But it remains true that all the shades of tone
which the pianist can get out of one note form one linear sequence only, this
corresponding to the different speeds with which the hammer can strike the wire;
and it is quite certain that the human emotions cannot be placed in a single linear
sequence. Also it seems clear that, so long as he confines himself to striking single
notes, the greatest virtuoso has no greater range of effects at his disposal than the
child strumming at its five-finger exercises.



PLATE IV

Hart, Fuller and Lusby
Fig. 1. Sound-curves of a note on the pianoforte produced: (upper curve) by a well-known pianoforte virtuoso;
(lower curve) by letting a weight fall on the key. The curves are exactly similar, shewing that the virtuoso can

produce no greater effect than can be produced by merely mechanical means.

Hart, Fuller and Lusby
Fig. 2. A second pair of sound-curves produced respectively by virtuoso playing and
by dropping a weight on the pianoforte key. Again the two curves are seen to be
exactly similar.

SOUND-CURVES PRODUCED BY HUMAN SKILL COMPARED
WITH THOSE PRODUCED BY MECHANICAL MEANS



To put this last matter beyond doubt, three American scientists, Hart, Fuller and
Lusby, of the University of Pennsylvania, have recently made records of the sound
curves of single notes played by well-known virtuosi, and also of the same note
played by letting a weight fall on the keys. Two pairs of such curves are shewn in
figs. 1 and 2 on Plate IV. In each case the upper curve records the note played by the
professional, the lower curve that played by the falling weight. No visible difference
can be detected.
Making the string produce the desired quality of tone is only the first problem of
pianoforte manufacture; the second is the transmission of this tone to the hearer. A
metal wire has so small a diameter that its vibrations transmit but little energy to the
surrounding air; this is why the harp produces so feeble a sound. The pianoforte
produces a fuller sound by enlisting the help of a wooden sound-board, which is
made as large as the framework of the instrument permits. Securely fixed to this
sound-board is a bridge over which the wires of the pianoforte pass; this transmits
the vibrations of the wires to the sound-board.
When the sound-board takes up these vibrations, its large surface sets a considerable
mass of air into agitation, so that the sound is heard in ample volume even at a good
distance. It is important that all parts of the sound-board should be vibrating in the
same phase, otherwise the vibrations from different parts of the board will neutralise
one another in the way explained on p. 46. This requires that the sound-board shall
be built of a wood in which sound travels very rapidly. Norway spruce, in which
sound travels at three miles a second, is found to be specially suitable for this
purpose. Vibrations travel the whole length of a sound-board of this material in
about a two-thousandth part of a second, so that for low-pitched tones the vibrations
are in approximately the same phase all over the board, and for higher tones the
differences of phase are not excessive.

Bowed Strings

Theories of plucked and struck strings have proved to be comparatively simple; that
of a string which is bowed, as in the violin or violoncello, is very much more
intricate.
A violin-string gives out the same note when it is bowed as when it is plucked, and
this shews that the bowing must set up free vibrations of the string. We could not
have been sure of this from general principles alone; we might have thought that as
the bow provides a continuous stream of energy, it would compel the string to
perform "forced" vibrations. Such forced vibrations are, in actual fact, ruled out
because the force which the bow exerts on the string has no definite periodicity of its
own.
Helmholtz was able to trace the motion of a violin-string during the bowing process,
by attaching a bright bead to it and taking a succession of instantaneous



photographs. A more modern method is to make the bowed string perform its
vibrations behind a narrow slit, placed at right angles to the string. On looking
through this slit, we see only a single point of the string, and when the string is
vibrating, this appears to be moving up and down behind the slit. The detailed
motion is, of course, too quick to be followed with the eye, but it is easily recorded
photographically. If a sensitised plate is made to move steadily and rapidly past the
slit, we obtain a trace of the motion of that point of the string which lies opposite the
slit.
Helmholtz found that two different types of motion alternate in rapid succession. In
the first, the bow grips the string firmly, so that this is dragged along and shares the
motion of the bow. This kind of motion cannot go on for ever, because the farther the
string is dragged from its normal position, the greater is the force needed to keep it
from slipping back. A time must come when the bow is no longer able to exert the
necessary force, and then the second motion ensues. The string slips back along the
bow until it has considerably overshot its normal position, when the bow again takes
hold, and the motion repeats itself indefinitely. Helmholtz found that the whole
motion takes place in the plane in which the bow moves, and obtained traces of the
motions of various points of the string.

Fig. 38. Trace of the motion of a point on a vibrating violin-string, at a quarter of the string's length from the
bridge.

Fig. 38 shews the trace for a point one-quarter of the way along the string. The parts
AB, CD, EF, . . . represent motion in which the string is being dragged with the bow;
the parts BC, DE, . . . that in which it is slipping back and overshooting its normal
position. In this particular case the slipping movements occupy a quarter of the
whole time. For other points of the string the fraction is different, being always equal
to the fraction of its whole length that we have to go along the string to reach the
point at which it is bowed.
Each time that the bow loses its grip on the string, as well as each time that it
resumes this grip, the vibration of the string undergoes a sudden change of phase.
Thus, if two violins are playing in unison, the difference in phase of their two
vibrations changes repeatedly, so that the sounds they emit may reinforce one
another at one instant, but enfeeble one another at the next (p. 39). These frequent
alternations of loudness cause the "beating" or undulating effect which is
characteristic of strings playing in unison, even when they are perfectly in tune with
one another.



The data which are embodied in fig. 38 enable us to analyse the motion of the string
into its constituent harmonics. Helmholtz shewed that the strengths of the various
harmonics must always be in the ratio of 1:1/4:1/9:1/16: etc., whatever the point at
which the string is bowed.
This assumes that the string is bowed in a direction which is strictly at right angles to
its length. Bowing in any other direction sets up longitudinal vibrations, and these
make themselves heard in the agonising squeaks and scratches which characterise
the efforts of the beginner, and may properly be left out of our discussion.

Violin Tone

Confining ourselves to legitimate playing, we may say that of the two factors we
introduced on p. 88, the first or positional factor is always equal to unity, while the
second or ordinal factor has the same value as for a plucked string. No matter where
the string is bowed, the first, third, fifth and other odd-numbered harmonics occur in
the same strength as in a string plucked at its middle point, but the second, fourth,
sixth and other even-numbered harmonics, instead of being completely absent, are
present in full strength, with the result that the bowed string has a fuller, more
brilliant and richer tone than the plucked string.
It is somewhat surprising to discover that the tone quality of a violin cannot be
varied by bowing the string at different points. At first this may seem to put the
violin on the same level of comparative inexpressiveness as the piano. But we must
remember that sounding a piano note is a momentary event—everything is settled
the moment the hammer has hit the wire—whereas sounding a violin note is a
continuous event. In either case the sounds can vary only in strength, but on the
violin the strength may vary from instant to instant, and this opens up new
dimensions of expressiveness to the violin.
Also a violin-bow has considerable width, which was disregarded in the
mathematical investigation of Helmholtz. When the width of the bow is taken into
account, the motion of the string is still found to be tolerably independent of the
point of bowing, but is no longer entirely so. A wide bow has somewhat the same
effect on violin tone as a felted hammer has on piano tone—by smoothing out the
curve formed by the string, it eliminates some of the highest harmonics, particularly
those which would have a node anywhere under the bow. The string may be bowed
anywhere from a seventh to a fifteenth, but is usually bowed at a ninth or tenth, of its
length from the bridge—more in piano passages, and less in forte passages. If it is
bowed sul ponticello—i.e. close up to the bridge—the bow does not lie over any
nodes except those of very high harmonics, so that moderately high harmonics are
produced in full strength, and the note has a metallic sound. As the bow is moved
farther away from the bridge, the higher harmonics sound less strongly, and the tone
acquires a gentler and smoother quality which is better suited for piano passages. A



tone of harsh metallic quality is, however, obtained by playing at any point with the
wood of the bow—col legno—because the higher harmonics are no longer smoothed
out by the width of the bow.
The body of the violin serves the same purpose as the sound-board of the piano;
having picked up the vibration of the strings, it sets into vibration a larger body of air
than could be affected by the strings alone. There is, however, an essential and
important difference between this sound-board and that of the piano. The piano
sound-board serves only to pass on the vibrations of the wires, and the more
faithfully it does this the better it is deemed to be. The body of the violin, on the
other hand, is expected not only to pass on the vibrations it receives from the strings,
but to add something of its own. Its free vibrations are of high pitch, and as many of
them coincide in frequency with harmonics of the notes produced by the strings,
these particular vibrations may be much reinforced by resonance. It is their presence
that gives the instrument its peculiar tone or timbre. Such a group of frequencies is
known as a "formant".
Most violins have a group of free vibrations of frequencies between 3000 and 6000;
and it is through the reinforcement of harmonics having these frequencies that the
violin gains its distinctive rich tone. The free vibrations of the viola are of lower
frequency, because of its larger dimensions, and this explains why a low note on the
violin sounds quite different from the same note on the viola—the body of the violin
reinforces a group of quite high harmonics, while the body of the viola reinforces a
group of much lower harmonics.

It is less easy to explain why a note played on a good violin sounds different from
the same note played on a bad violin. But it emerges from much discussion that, here
also, a large part of the difference can be traced to a difference of frequencies in the
formant. Backhaus has examined the frequencies of the body vibrations of a first-
class Stradivarius, and finds that the majority are fairly evenly distributed between
3200 and 5200. In other violins the frequencies are usually lower and also less
evenly distributed. A good modern violin shewed a distribution which approached
that of the Stradivarius in uniformity, but the frequencies themselves were about 500
cycles lower. In a poor modern violin, the frequencies were not only less well
distributed, but were also about 1000 cycles lower. In brief, the bad violin picks out
certain rather low harmonics in an arbitrary way, and reinforces these unduly, while
the good violin picks out a wide band of high harmonics, and reinforces these fairly
impartially.
It used to be conjectured that the varnish on old violins might contribute in some
special way to producing a rich even tone, but recent scientific investigations have
given no support to this theory. It is the wood, rather than the varnish, which is found
to be important. Lark-Horovitz and Caldwell have examined by X-rays the bodies of
a number of old violins by Stradivarius, Amati and others, and find that in the best
violins the front of the belly is usually made of very fibrous wood (generally spruce),
cut in such a way that the vibrations do not spread as freely sideways as



longitudinally, whereas the wood of which the back is made shews no such
peculiarity. It seems possible that X-ray analysis may in time solve the riddle
presented by these old violins, and enable manufacturers to build violins of
Stradivarius quality by mass-production, if they please.



[C]

[D]

FOOTNOTES:
It might seem simpler to treat the original curve as a whole period of a repeating curve,

but there are mathematical reasons against this.

Actually they are the fundamental tone, the second, third, fourth, fifth, sixth and eighth
harmonics, together with the sub-octave and the quint, the last being a harmonic of the 16-
foot tone, but not, of course, of the 8-foot tone.



 CHAPTER IV
THE VIBRATIONS OF AIR

The last two chapters have been concerned with the vibrations of tuning-forks and of
strings. The vibrations of tuning-forks proved to be mainly of theoretical interest,
helping us to understand vibrations and sound-curves in general. On the other hand,
the discussion of the vibrations of strings established direct contact with practical
musical problems, the sounds produced by the violin, piano, harp, etc. In the present
chapter we shall consider a further class of musical instruments in which the
vibrating structure is a column of air—organ-pipes, flutes, whistles, oboes, fifes, etc.

The Spring of Air

For our first experiment we need only very simple apparatus—an ordinary bicycle or
motor-tyre pump with a reasonably close-fitting piston. Let us cork up the tube at the
outlet end, and stand the pump vertically, with the piston near the top, as in fig. 39.

The piston does not immediately fall to the bottom, because the pressure of the air in
the tube holds it up. We can push it down by pressing hard on the handle, but the
moment we take the pressure off, it bounces up again, just as though the air inside
the tube formed a spring. Indeed we have discovered what Robert Boyle called "the
spring of air".
We shall understand the mechanism of this "spring of air" if we bear in mind that a
gas consists of an immense number of molecules which dart about to-and-fro at very
high speeds, each moving in a straight path until it either collides with another
molecule or runs into some solid object. When either of these events occurs, the
molecule just bounces off and starts on a new path.
The larger the molecules are, the more they will interfere with one another's motion,
so that we can measure their size by examining to what extent they interfere with
one another. We find that they are of very different sizes, the simplest substances
having the smallest molecules, as we might perhaps expect. The simplest and
smallest of all molecules, the molecule of helium, which consists of a single atom,
has a diameter of rather less than a hundred-millionth part of an inch. The molecule
of hydrogen, with two atoms, is rather more than a hundred-millionth of an inch in
diameter, while that of air is larger still. The molecules of water vapour (H2O) and



carbon dioxide (CO2), each of which contains three atoms, have diameters of nearly
two-hundred-millionths of an inch.

Fig. 39. The spring of air can be tested in an ordinary bicycle or car pump (closed at the outlet end). If we press
the handle down it bounces up again, as though the piston were resting on a spring.

Even the smallest particle of matter we can see must obviously contain an immense
number of these excessively minute molecules; in actual fact, a tiny drop of water is
found to contain millions of millions of millions. If the molecules of air in an
ordinary room were put end to end, they would form a chain which would go round
the earth 25,000 million times; if the same molecules were spread uniformly over the
surface of the earth, there would be 5000 million to every square inch of surface.
The average speed of the molecules of air of an ordinary room is about 500 yards a
second, which is roughly the speed of a rifle bullet. This means that every solid
surface in the room is exposed to a continuous hail of projectiles, each moving with
the speed of a rifle bullet. It is this incessant bombardment that causes the pressure
of the air. With each breath we take, millions of millions of molecules enter our
bodies, and it is only their continual hammering on our lungs from inside that keeps
our chests from collapsing. In the same way the piston in the cylinder of a
locomotive undergoes millions of millions of millions of millions (1.4 × 1029) of
bombardments by molecules of steam every second; although the total weight of
molecules in the cylinder is only a few ounces, yet their impact urges the piston
forward in the cylinder and so propels the train of hundreds of tons weight.
We can now see what happens when we press the piston of our bicycle pump farther
into the cylinder. We compress the air inside, and so crowd the molecules more
closely together. As a result, the number of molecules which hit upon the piston from



inside increases, and the pressure on its lower surface is increased. This increased
pressure is responsible for what we have called the spring of air.

The Vibrations of a Column of Air

This quality of springiness results in a column of air having free vibrations of
definite frequency—just as a metal spring has. If we blow over the open end of a
pipe or tube, we hear a musical note, and the pitch of this tells us the frequency of
vibration of the air inside the pipe or tube. Again, we may hold a vibrating tuning-
fork over the open end of a glass vessel, while we gradually fill the vessel with water
(fig. 40). At one stage of the filling process, the note of the fork may be heard to ring
out clear and loud, shewing that the column of air standing above the water has a
free vibration of the same frequency as the fork.

Fig. 40. When the tuning-fork gives a clear loud note there is resonance between its vibrations and those of the
column of air in the glass vessel.

The best way of studying the free vibrations of a column of air is, however, through
an experiment which is in many ways analogous to Melde's experiment. That
enabled us to discover the free vibrations of a stretched string; this will enable us to
discover the free vibrations of a column of air. We take a tube filled with air, closed
at each end by a sliding stopper, and lay it horizontally as in fig. 41. The stopper S at
one end fits closely, but the stopper T at the other is so loose that we can move it in
and out easily by hand. This apparatus is practically that of the experiment with the
pump, but laid in a horizontal position. We again find that we have to exert a certain
amount of force to push the stopper T inwards; if we then let it go, the spring of the
air inside pushes it out again, and causes it to oscillate backwards and forwards for a
time, just as though there were a real spring of metal wire connecting T with S.



To find the frequencies of the free vibrations of such a column of air, we attach one
fork of a vibrating tuning-fork[E] to the movable stopper T, and gradually move the
stopper S backwards and forwards. This motion naturally changes the periods of the
free vibrations of the air in the tube, and at intervals one of these must coincide with
the period of the fork. When this occurs there is resonance, and a clear loud note
rings out. We shall find that resonance occurs when the distance ST has certain
definite values, and that these are all multiples of the same length. For instance, if
the shortest distance for which resonance occurs is 1 foot, the other distances will be
2 feet, 3 feet, 4 feet and so on—in brief, an exact number of feet—until we reach the
limit imposed by the length of our tube.

Fig. 41. Apparatus for investigation of the vibrations of a column of air ST.

We shall see what this means if we replace our tube by one of glass (which must be
very dry inside) in which we have scattered some very light fine powder, as for
instance cork filings or lycopodium powder. When the tuning-fork is set into
vibration, the particles of powder exhibit the agitation of the air by dancing about, so
that the whole tube is filled with dust. When the stopper reaches a position in which
resonance occurs, the agitation becomes even more violent throughout most of the
tube, but there are certain points of calm, at which the powder begins to settle down,
and finally forms little piles. In the instance just taken, we should find that these are
at distances of 1 foot, 2 feet, 3 feet, and so on, from T, and as the length from S to T
is an exact number of feet, the last heap of all will be close up against S, as in fig.
42.

Fig. 42. If we put dust into the vibrating column of air, this settles in little piles at evenly spaced
points A, B, C ..., shewing that these points are nodes of the vibration.

It is easy to see what has happened. As the dust can stay at rest at these particular
points, it is clear that there can be no agitation of the air there; these points must then
be "nodes" (p. 75) of the vibration. In other words, the equal lengths of air TA, AB,
BC, CS in fig. 42 must be vibrating separately—just as the stretched string vibrated
in separate equal lengths (p. 67).[F] Thus the free vibrations of a column of air are



exactly analogous to those of a stretched string; the column can vibrate in any
number of equal lengths.
We might equally well have performed the experiment by fixing the stopper S, thus
keeping the column of air of constant length, and picking out the frequencies of its
free vibrations by substituting a succession of tuning-forks at the other end. We
should then have found that the frequencies consist of a fundamental frequency and
harmonics having frequencies 2, 3, 4, ... times that of the fundamental. The vibration
having four times the frequency of the fundamental is, of course, one in which the
column of air vibrates as four separate equal parts.
From a series of experiments of this kind, we shall find that the period of each
vibration is exactly proportional to the length of the column of air which is vibrating.
This is the exact analogue of the law of Pythagoras (p. 64) and admits of a similar
interpretation. For, just as with the stretched string (p. 69), we can regard the
vibrations of a column of air as made up of waves travelling through the air from T
to S, and back again after reflection at S. The law then tells us that these waves travel
always with the same speed.

We shall understand this better if we again think of the air in the tube as a collection
of swiftly moving molecules. Let us suppose that when the tuning-fork is first set
into motion, it begins by pushing the stopper T farther into the tube. This compresses
the gas in the layer TT′ (fig. 43) immediately behind T, and so not only increases the
intensity of bombardment on T, but also the bombardment on the next layer T′T″. So
far the bombardment across T′ has been an equal battle—as many molecules have
crossed from right to left as from left to right—but it now becomes unequal. More
molecules begin to cross T′ from the left than from the right. This relieves the
congestion in TT′, but only at the expense of creating a congestion in the next layer
T′T″. Exactly the same thing now happens in this layer as had previously happened
in the layer TT′, so that the congestion is passed on to a third layer T″T‴, and so on
indefinitely.
Thus the inward motion of the stopper T causes a wave of congestion to travel along
the tube. It must obviously take time to travel, because the molecules themselves
only travel at a finite speed. When T first begins to move to the right, molecules are
pushed away from T and, so to speak, carry the news of what has happened to the
farther layers—rather like an army in flight. This news cannot possibly travel faster
than the messengers which carry it, namely the molecules, and actually it does not
travel quite so fast, because the molecules do not dash forward in uninterrupted
straight paths, but are continually buffeted about by the other molecules which
collide with them, and so pursue a zigzag course. After allowing for this and various
other considerations, we find that the wave of congestion travels at only 74 per cent.
of the average speed of the molecules.



Fig. 43. The passage of a wave through a column of air.

 After the stopper T has moved a certain distance to the right in fig. 43, the tuning-
fork reverses its motion, and the stopper begins to move to the left. The motion just
described now repeats itself, except that the wave is no longer one of compression,
but of rarefaction. It travels at the same speed as the wave of compression which
preceded it, namely at 0.74 times the average speed of the molecules.

Fig. 44. Four stages in the vibration of a column of air. The vertical lines represent the same particles
in different stages of the motion. The arrows shew the direction of motion, their length being
proportional to the speed of motion. (The figures in the top line are proportional to the lengths of the
arrows below them; the second line of figures represents the difference in phase between the point
and the extreme left-hand.)

The repeated backwards and forwards motion of the tuning-fork sends a succession
of waves of compression and rarefaction through the gas, all travelling at precisely
the same speed. Each wave, as it reaches the stopper, is reflected back, and travels
along the tube in the reverse direction. The superposition of two waves of equal
amplitude travelling in opposite directions constitutes one of the free vibrations we
have already discussed—the motion is exactly analogous to the vibration of a string
illustrated in fig. 30 (p. 71). Fig. 44 shews the distribution of density at four stages of



progress. The arrows shew the speed of motion; the closeness of the lines indicates
the density of the gas, and the order is 1, 2, 3, 4, 1, 2, 3, 4, 1, ..., etc.
If the stopper S were not blocking up the far end of the tube, the waves would pass
out of the tube into the open air beyond, and the sound of the vibrating fork would
be heard through the whole of the surrounding space. Clearly then this travelling of
waves of alternate compression and rarefaction must constitute the passage of a
wave of sound.

The Speed of Sound

It is easy to calculate the speed at which these waves of sound travel through the
tube. In the simplest vibrations of all, the wave travels from T to S and back again
while the fork makes half a complete vibration, so that it travels four times the
length of the pipe in the course of a whole vibration. In this way we find that the
speed of the wave is about 1100 feet a second.
This is well known as the speed with which sound travels in air. We may often see a
puff of steam coming from the whistle of a distant train, but it is not until a few
seconds later that the sound of the whistle reaches us. On comparing the distance of
the train with the time its sound has taken to reach us, we shall find that the speed of
sound is about 1100 feet a second, or twelve miles a minute. Or, if we happen to live
about two miles from Westminster, we may listen to the chimes of Big Ben on our
radio, and then hear the sound of the actual bells come through our open windows
some ten seconds later. Again, we can calculate that sound travels about twelve
miles a minute, or 720 miles an hour.
Although this speed is rapid in comparison with most of the speeds we meet in life,
it is not unthinkably rapid; indeed, it is only about double the speed of the fastest
aeroplane or motor-car. We can obtain a visual demonstration of it by watching
troops marching behind a military band. As each man hears the beats of the music,
he puts his foot down, and so slightly lowers his head, but the men do not all hear
the beats at the same time, because the sound of the band takes time to travel along
the line of troops. We see a wave of head-lowering running along the line of men as
the sound reaches them, just as we see the heads of corn lowered in a wheatfield
when a gust of wind passes over them. Just as the motion of the wave of head-
lowering in the corn shews the speed of the wind, so the motion of the wave of head-
lowering in the troops shews us the speed of sound.
The fact that sound travels only at a finite speed introduces certain complications
into the performance of music. In a large orchestra, two instruments will often be as
much as 50 feet apart, and in a large, and especially in a divided organ, two manuals
may have their pipes 50 feet apart. As sound takes about a twentieth of a second to
travel 50 feet, two sounds may be produced simultaneously and yet a listener may
hear one a twentieth of a second later than the other.



Now a twentieth of a second is not a negligible quantity in the performance of

music; at ♩ = 152, it is the duration of a 𝅘𝅥𝅰, and a time-lag of this amount may
reduce a trill or a rapid passage to an unintelligible blur of discordant sounds. For
this reason instruments which will sound together in an orchestra should be placed in
as close a physical proximity as is possible, and the organist should think well before
coupling two manuals of which the pipes stand far apart.
So long as a sound is not too loud, its speed of travel is the same for all intensities.
Very violent noises, such as explosions and gunfire, are found to travel considerably
faster than the quieter sounds of music, but we are not concerned with these in the
present book. Also the speed of travel is the same for musical sounds of all pitches—
when music is played at a distance, the different notes reach us precisely in the order
in which they are played; a chord remains a chord, and does not spread out into an
arpeggio, as it would if there were any tendency for notes of high or low pitch to
scramble in front or lag behind the notes of medium pitch.
These two facts are of great importance to music. If there were any tendency for
loud notes or soft notes, high notes or low notes, to travel faster or slower than
others, all music would be reduced to chaos before it reached the listener.

The Speed of Sound in Gases other than Air

If we repeat the experiment described on p. 111, but fill our tube with some gas other
than air, such as domestic coal gas, we shall find a different speed of sound, and the
same is true if we fill the tube with warm air. The following table shews the results
of experiments of various kinds on the speed of sound in different gases:

Gas Speed of sound
Dry air at 32° F. 1087 feet a second
        "       60° F. 1118         "  
        "      212° F. 1287         "  
Hydrogen at 60° F. 4340         "  
Carbon dioxide at 60° F.   850         "  

If we again think of our gas as a collection of swiftly moving molecules, we see at
once why sound must necessarily travel at different speeds in different gases—it is
because their individual molecules travel at different speeds. A general law of
physics tells us that heavy molecules move, on the average, more slowly than light
ones, so that sound travels more slowly in a gas with heavy molecules than in one
with light molecules, as is shewn in the above table. The table also shews that sound
travels faster through a hot gas than through a cold one, and we can now see why. To



warm a gas, we must supply extra energy to it. This extra energy distributes itself
over the various molecules of the gas, causing each to move at a higher speed, and
so increasing the speed at which sound is transmitted through the gas. In ordinary
air, the speed of molecular motion increases by approximately one per cent. for
every ten degrees Fahrenheit that the temperature rises, so that the speed of sound
increases by 1.1 feet a second for each degree.
The fact that the speed of sound varies with the temperature entails important
practical consequences. We have seen that the period of vibration of a column of air
is proportional to the time sound takes to travel over the length of the column. If the
air is warmed, sound travels faster and the period becomes less. It follows that the
pitch of all wind instruments is raised when the temperature rises, or when they are
taken into a warmer atmosphere. This explains why the instruments of an orchestra
must be tuned afresh each time the temperature changes. Before a concert the tuning
is performed in the concert hall itself, so that the various instruments will be in tune
with one another in the actual air in which they are to be played, and, for the same
reason, the players of wind instruments breathe into their instruments before tuning
them.
Finally, the fact that sound travels at different speeds in different gases provides a
means of discovering when the air of a coal-mine is vitiated by "fire-damp"—the
explosive gas which may cause a disaster if it comes into contact with a naked light.
Two similar pipes or whistles are blown simultaneously in the mine, the one being
filled with pure air which has been brought into the mine in a metal container to
serve as a standard, the other with the air of the mine whose purity is under
suspicion. If the air of the mine contains much fire-damp, the sound will travel at
different speeds in the two pipes, so that the free vibrations of the two columns of air
will be of slightly different frequencies, and beats will be heard. The number of beats
heard per second gives, of course, a measure of the degree of impurity of the air.

Refraction of Sound

It is a general property of wave-motion that waves travelling through a uniform
substance follow a straight path; when the substance is not uniform, they are bent or
"refracted" somewhat as a ray of light is bent in passing from air to water. The
bending is always away from the substance in which the speed of travel is fastest,
just as, when troops wheel round, the direction of march is bent away from the man
who walks fastest. Suppose, then, that we have a layer of cold air near the ground,
with a layer of hot air lying above it. The speed of travel is faster in the upper layer,
so that when sound which has been travelling through the lower layer strikes the
upper layer, it is bent back towards the lower layer, and may be driven back into this
and compelled to continue its journey through it.



These conditions often occur over the surface of a lake or other piece of still water,
especially in the early morning when the water of the lake is still cold. If a person in
a boat speaks or sings, the sound of his voice will begin by spreading out in all
directions, but as soon as the waves reach the upper layer, they are bent back and
forced to continue their journey through the lower layer. No energy is dissipated by
an upward spreading of the waves, so that the voice can be heard to a far greater
distance than it otherwise could.
The same conditions, but on a larger scale, often prevail in hilly or mountainous
country, so that a voice can be heard to incredible distances, the sound not so much
crossing the valleys as creeping along the ground.
On a larger scale yet, the same conditions are found in the atmosphere as a whole.
This consists of a lower layer known as the troposphere, and a higher layer known as
the stratosphere. The latter is much warmer than the former, so that when a sound is
generated down below, only a small fraction of its energy passes into the
stratosphere, the remainder being bent back and coming to earth again. An explosion
or other loud noise may often be heard at great distances by waves of sound which
have been reflected back from the warm stratosphere.

Somewhat similar conditions may also occur when the wind is stronger high up
above the earth's surface than it is near to the ground. Suppose that a wind from the
west is blowing at 20 feet a second near the ground, and at 40 feet a second higher
up. Then a sound which is produced near the ground will travel through the air at
1100 feet a second, while the air is itself travelling eastward at 20 feet a second.
Thus sound will travel eastward at 1120 feet a second when near the ground, but at
1140 feet a second higher up. Again the sound is continually bent away from the
layer of faster travel—the upper layer—and so is compelled to creep along the
ground, and may be heard to great distances. For sound travelling westward, exactly
the opposite conditions prevail. The speed of travel is 1080 feet a second near the
ground, and 1060 feet a second up above. The sound is continually bent away from
the earth's surface, and may become quite inaudible at only a short distance to the
west of its origin. We see why sound so often seems to be "carried with the wind",
and why it is difficult to "shout into the wind".

 Air Vibrations in Music

A column of air is like a stretched string in having vibrations of which the
frequencies stand in the simple ratio 1:2:3:4:... In either case the harmonics are the
"natural harmonics", so that anything which causes the fundamental tone to sound is
likely to produce a generous supply of harmonics as well.
This property explains the outstanding importance of the stretched string and the
column of air as sources of musical sound; if they are kept continuously in vibration,
their higher harmonics, being natural harmonics, are sounded as well as their



fundamental tones, and we hear the rich musical tone which results from an
abundance of concordant harmonics.
We have also seen that other structures do not possess this property; the frequencies
of the free vibrations of drums, cymbals and triangles do not stand in any simple
ratio to one another, so that their harmonics are not natural harmonics. For this
reason it would be difficult to make their higher tones sound continuously, and even
if they did, they would produce discordant tones. In brief, their sounds are only
suited for momentary hearing. We see at once why the instruments of an orchestra
fall into the three departments of strings, wind and percussion, and it is interesting to
notice that these correspond exactly to the bowstring, the broken reed and the drums
and beaten sticks which, it has been suggested, first awakened the musical feelings
of primitive man. We begin to see why all the musical instruments of to-day have
developed out of these three prototypes—why thousands of years of effort have been
unable to find new departments of music-producing instruments.
The special property of the free vibrations coinciding with the natural harmonics is
possessed to perfection by the air inside a tube which is closed at both ends.
Unhappily the vibrations of such a column of air can only be excited by opening the
tube to the outer air at one or both ends. The perfection then disappears, for a reason
we shall discuss shortly. If the diameter of the tube is very small in comparison with
its length, the perfection is only slightly impaired, and the vibrations are still not
unlike those of a stretched string—this is why the string-toned registers of an organ
are made of excessively narrow pipes. In the more usual case, in which the diameter
of the pipe is appreciable, there is a deficiency of the higher harmonics—this is why
wide organ-pipes of the diapason type need to have their harmonics supplemented by
separate smaller pipes which supply the missing harmonics directly (p. 244).

We can only discuss such problems in detail, when we understand the way in which
the vibrations of a column of air are excited. We accordingly turn to a discussion of
this question.

Whirlpools and Whirlwinds

When water is flowing in a rocky torrent, we may notice a great difference in the
quality of flow before the stream encounters a rock and after. Before it meets the
rock, the torrent flows onwards in a calm steady stream; afterwards it is broken into
innumerable whirlpools and eddies. We see the same thing when a boat or ship
moves through still water; in front of the bow there is calm water, but astern there is
a seething mass of whirlpools. The general features are much the same as those we
see when the water flows past a fixed rock; indeed they must be, since it can make
but little difference whether the water moves past an object at rest, or the object
moves through water at rest.



PLATE V

G. J. Richards
The motion of the water is made visible by mixing into it minute drops of milk and alcohol.

EDDIES FORMED BY DRAWING AN OBSTACLE
THROUGH STILL WATER



PLATE VI

G. J. Richards
The procession of eddies is now perfectly regular, and it is clear that eddies have been formed on the two sides of

the obstacle in turn.

THE SAME EDDIES AS ARE SHEWN IN PLATE V, BUT AT
A GREATER DISTANCE BEHIND THE OBSTACLE



Plates V and VI shew photographs by G. J. Richards of the eddies formed behind an
obstacle when it is drawn through still water. The eddies immediately behind the
obstacle are shewn on Plate V, those farther behind on Plate VI. Fig. 45 shews a
sequence of six drawings of eddies formed when water streams past a circular wire.
Both this and the photographs produced on Plates V and VI shew that the eddies are
formed on the two sides of the wire alternately.

Fig. 45. The eddies formed in water as it streams past a long thin wire.

Exactly similar phenomena occur in air, although they are not so easily observed.
When the wind or a blast of air encounters a small obstacle, little whirlwinds are
formed which are the exact counterparts of the whirlpools which are formed when a
stream of water strikes a rock. There is a steady flow of air in front of the obstacle,
and a steady train of whirlwinds behind it. These whirlwinds are formed on the two
sides of the obstacle alternately; as soon as one comes into existence, it begins to
drift away in the general current of air, thus making place for others which are
formed in turn behind it. Some drawings of such whirlwinds are shewn in Plate VII
(facing p. 133).
We may seem to be still a long way from music. Actually we are very near, for it is
precisely these little whirlwinds of air that are responsible for the production of
sounds in wind instruments—without them our flutes and organ-pipes would cease
to function.

The "Wind Whistle"

When whirlwinds are formed by the wind streaming past an obstacle of any kind, the
formation of each little whirlwind gives a slight shock, both to the obstacle and to
the air in its neighbourhood. If the wind blows in a continuous steady stream, these
shocks are given to the air at perfectly regular intervals. We may then hear a musical
note—it is what is often described as the "whistling of the wind", or the "wind



whistle". Its pitch is of course determined by the frequency of the shocks to the air,
and this is the number of whirlwinds formed per second. Experiment shews that a
whirlwind is formed every time the wind passes over a distance equal to 5-2/5 times
the diameter of the obstacle, and this makes it possible to calculate the pitch of the
note. Suppose, for instance, that we are at sea, with the wind blowing at 40 miles an
hour through a rigging of half-inch ropes. Simple arithmetic shews that 40 miles an
hour is 704 inches a second, so that the wind traverses 1408 diameters of the rope
every second. Dividing this by 5-2/5, we obtain 261 as the frequency of the note of
the "wind whistle"—middle C of the piano. If the wind blows faster, whirlpools are
formed faster and the pitch of the wind whistle rises, the frequency being exactly
proportional to the wind velocity. When the wind "howls", we hear the pitch of the
note rising and falling, and its frequency at any instant gives a measure of the speed
of the wind at that instant. If the obstacles which the wind meets are smaller, the
pitch is higher; this is why we hear notes of high pitch when the wind blows over the
telegraph wires on land, and still higher notes when it blows through stalks of corn
or blades of grass.
Each little whirlwind gives a shock not only to the air, but also to the obstacle to
which it owes its existence, so that, as the whirlpools are formed on alternate sides of
it, this is pushed to-and-fro from side to side. It is these pushes that make the rope of
a flagstaff flap in the breeze, while the fluttering of the flag at the top shews the
whirlwinds chasing one another along it, first on one side and then on the other.
These motions are all "forced" vibrations, being forced by the flow of the wind. The
solid obstacle will, of course, have its free vibrations as well, and if the period of any
one of these happens to coincide with the period of the vibrations forced by the
wind, resonance will occur, and a musical note may ring out very loud and clear.
This is why the telephone wires sing at their loudest in frosty weather; the cold has
contracted them, so that they are stretched as tight as violin-strings, and their free
vibrations have gone up into the region of frequencies inhabited by the whirlwinds.

The Aeolian Harp

It is these same little whirlwinds that produce the sound of the Aeolian harp. In this a
number of wires are stretched across a framework, which may be placed in an open
window or in any place where there is likely to be a good draught of air. As this
blows across the strings, it sets them into vibration in the way just explained, and a
clear note is heard whenever one of the vibrations set up by the wind has the same
frequency as one of the free vibrations of the strings. The strings are usually tuned to
the same pitch, but are made of different thicknesses, and so emit wind whistles of
different pitches when the wind blows over them. A string sounds clearly and fully
when the pitch of the wind whistle it emits coincides with any one of the harmonics
of the note to which the strings are tuned. So long as the wind confines itself to
exciting harmonics not higher than the tenth, we hear sounds which belong to the



ordinary musical scale. The eleventh and higher harmonics, however, introduce
notes which do not belong to the ordinary scale, and these provide the weird
unearthly quality we associate with Aeolian tones.

Edge Tones

Tones of a similar nature are produced when a stream of air or gas strikes the sharp
edge of a wedge of metal or other hard substance. The phenomenon has been studied
in great detail by Lootens, Hensen, Weerth, Wachsmuth and many others. The
general procedure is to maintain the air in a reservoir R (fig. 46) at a steady pressure,
and allow a thin blast of air to escape out of a narrow slit S and strike upon a sharp
edge E placed parallel to it.

Fig. 46. Apparatus for the study of edge tones.

The impact of the stream of air on this sharp edge produces practically the same
physical conditions as occur when the wind blows on a telegraph wire, or on a string
of an Aeolian harp. Little whirlwinds are formed on the two sides of the edge
alternately, and move along the sides of the wedge to make place for their
successors. Again the whirlwinds are formed at perfectly regular intervals, and so
produce a musical note of definite pitch, known as an "edge tone". We have seen that
the frequency of an Aeolian note is proportional to the speed of the wind. In the
present instance the speed of the air blast replaces that of the wind, and this clearly
diminishes as we go farther from the slit. Thus the pitch of an edge tone will depend
on the distance of the edge from the slit. If the jet began to spread fanwise the
moment it emerged from the slit, we should expect the velocity at E to be inversely
proportional to the distance SE, in which case the frequency of the note sounded
would vary inversely as the distance SE. Wachsmuth has verified that this is
approximately the case, but only up to a certain limit. If the edge E is gradually
moved away from the slit, the note falls in pitch for a time in accordance with the
law just explained. But when the distance SE reaches a certain critical value, the
pitch, instead of continuing to fall, suddenly jumps an octave.
A detailed study of the eddies shews that each has now lost its former simplicity and
broken into two, single eddies no longer being long enough to span the gulf. The
eddies are now formed just twice as frequently as before, so that the frequency of the
edge tone is doubled, and its pitch rises by an octave.

After this the law of inverse distance is again obeyed for a time, and then the note
again makes a jump—this time through the interval of a fifth, and so to the twelfth,
or third harmonic, of the note our simple law would lead us to expect. Clearly each
of the original eddies has now broken into three. Later on, yet another jump occurs,



this time to the fifteenth or super-octave of the note given by the law of inverse
distance. Thus as the distance SE is gradually increased, the "edge tone" sounds in
turn the successive harmonics of the fundamental tone given by this simple law. The
reason for the successive jumps of pitch is always the tendency for the simple
whirlwinds to break up into a number of smaller units.
We can pick out these different edge tones by using a set of Helmholtz resonators.
Or we may place a tube near to the edge E, and if one of the free vibrations of the
column of air in this tube happens to have the same frequency as the edge tone, this
tone will sound clearly and firmly from the tube.

Flue Organ-Pipes

A note produced in this way is practically identical with the note of an ordinary flue
organ-pipe. In this the slit, the edge, and the resonating column of air are all
combined to form a single structure. The arrangement is shewn diagrammatically in
fig. 47.
Air is maintained at a steady pressure in a wind-chest W, and can only pass from the
wind-chest into the pipe when a valve or "pallet" V is opened. A blast of air then
passes through the foot of the pipe F, and is concentrated by a slit S—known as the
"flue"—into a narrow jet which impinges on the upper lip L.
Here eddies are formed in the way already explained, and cause rapid alternations of
pressure, which produce "edge tones" and also set up vibrations in the column of air
in the tube. If the edge tone is approximately in resonance with one of the free
vibrations of this column of air, energy will be supplied to this particular vibration
very rapidly, so that the pipe will speak promptly. If the periods are widely different,
energy will accumulate slowly in the free vibration, and the pipe may be slow of
speech.



Fig. 47. A flue organ-pipe. Air escaping through the slit S impinges on the lip L and produces an edge tone, thus
setting the column of air inside the pipe into vibration.

Usually there is no close approximation to resonance between the edge tones
produced at the lip of the pipe and the body vibrations of the column of air in the
pipe. The two form what is known as a "coupled system"—a system formed of two
separate systems, neither of which can perform its own free vibrations without
interference from the other.
A system is said to be "loosely coupled" when this mutual interference is slight, so
that either system can perform its own free vibrations almost unmolested by the
motions going on in the other. The free vibrations of the coupled system are then the
sum of the separate free vibrations of the two component systems, except that the
pitches of either may be pulled just a little out of tune by the presence of the other. A
system is said to be "closely coupled" when the opposite conditions prevail.
If one of the two systems is far more massive than the other, its vibrations will
usually have much more energy. The more massive system will then "force" its
vibrations on the weaker, so that the free vibrations of the whole system differ but
little from those of the more forcible partner, each being pulled a little out of tune by
the weaker partner.

A simple illustration of a coupled system is provided by two clocks which are placed
in such close contact that each influences the time-keeping of the other. If they are
placed at opposite ends of a mantelpiece, they provide an instance of loose coupling;
their mutual influence may be so slight that each keeps its own time, almost—
although never quite—uninfluenced by any vagaries there may be in the time-
keeping of the other. Bringing them nearer increases the closeness of their coupling;
if we finally place them back to back this may become so strong that they keep
exactly the same time. If they are of equal strength and size, the time they keep will



be exactly half-way between the two times they would have kept if they had been
going independently. If, however, one is much stronger and more massive than the
other, it will take control of the whole motion. Its pendulum sets up vibrations in its
own framework, and these are transmitted to the framework of the weaker clock,
with the result that the oscillations of the pendulum of the smaller clock are no
longer "free", but are "forced" to keep pace with the vibrations of the framework
from which it is suspended. In this way the weaker clock is forced to follow in the
footsteps of its stronger brother, and both will keep the time which the stronger clock
would keep if the weaker one were non-existent.



PLATE VII

Z. Carrière
The number on each drawing gives the phase as a fraction of the whole period. The motion of the air was made

visible by mixing fine smoke with it.

EDDIES FORMED AT THE LIP OF A FLUE ORGAN-PIPE



The edge tones and the vibrations of the column of air in a flue-pipe form a coupled
system of this latter kind. The energy of the latter vibrations is so much greater than
that of the edge tones, that the latter may almost be disregarded, and the vibrations of
the whole structure treated simply as those of the air in the pipe. Nevertheless, the
edge tones are just too strong to be disregarded entirely, and exert a certain slight
influence on the tone of the pipe as a whole. We have seen that blowing the pipe
with a stronger blast of wind must raise the pitch of the edge tone, and this is found
to affect the pitch of the note emitted by the pipe to a perceptible extent. In flutes,
fifes and other wind instruments, the edge tones and air vibrations are rather more
closely coupled, so that the expert performer can control the pitch within fairly wide
limits by skilful blowing.
Plate VII shews some drawings, made by Carrière, of the trains of whirlwinds at the
mouth of an organ-pipe. The pipe lies to the right in each drawing, and the six
pictures are taken at approximately equal intervals of a sixth of a period, so that in
the repeating cycle

1, 2, 3, 4, 5, 6, 1, 2, . . .

all the intervals are approximately equal. The resemblance to the photographs
already shewn on Plates V and VI (pp. 124, 125) shews that edge tones are produced
by substantially the same mechanism as Aeolian tones.
Carrière has also made some important observations on the way in which the pitch
of the edge tone varies with the height of the mouth of the organ-pipe—the interval
SE in fig. 46 or SL in fig. 47. The table below shews the results of a set of
observations in which the slit was 1/10 inch (2.5 mm.) in width and the pressure of
the air was that of a column of water 160 mm. (6.3 inches) high.



Height of mouth Frequency of
edge tones Product

81 mm. 80 6480
89 74 6586
99 (= 4 inches) 62 6138

109 54 5886
119 48 5712
129 43 5547
139 35 4865
149 (= 6 inches) 33 4917
159 30 4770
167 28 4676

We see that the frequency falls off as the height of the mouth increases, and so far
this is in accordance with the law already mentioned. On the other hand, the two
changes are not strictly proportional, as is shewn by the product, given in the last
column, not being exactly constant. We get a much better proportionality if we
subtract 40 mm. from the height of the mouth; we then find that the product of the
reduced height of mouth and the frequency is approximately constant—as though the
jet of air travelled for about 40 mm. before beginning to spread out fan wise and lose
its speed.
 Carrière has also studied the effect of changes in wind pressure. The table below
shews the results he obtained when the slit was kept at the constant distance of 119
mm. and the pressure was made to vary from 30 to 200 mm. of water.

Pressure (mm. of water) Frequency of edge tone
30=(1-1/5 inches) 23
40 25
50=(2 inches) 28
60 30
80 33

100 35
120 40
140 42
158 44
182 46



200=(8 inches) 48

We see how an increase in the pressure, which necessarily increases the speed of the
air blast, increases the frequency of the edge tone also.
As the vibrations of the column of air in an organ-pipe involve much more energy
than the edge tones, they almost pull the latter into their own frequencies.
Nevertheless, for the pipe to sound promptly and with a clear full tone, it is desirable
that there should be as good resonance as possible between the edge tone and the
vibration tone of the column of air in the pipe. To attain this demands the skill of the
"voicer". For instance, if the frequency of our pipe is 33 (CCC), the tables just given
shew that we can get an edge tone in perfect resonance with it from either of the
following combinations:

Pressure =   80 mm. water; height of mouth = 119 mm.
or Pressure = 160 mm. water; height of mouth = 149 mm.,
besides which there must of course be an infinite number of other combinations not
entered in the above tables. A low wind pressure naturally demands a low mouth, so
that the speed of the air shall not have fallen too much before reaching the mouth,
and vice versa.
The two above tables are for a slit 1/10 inch in width. If the width of the slit is
increased, the pitch of the edge tone rises somewhat rapidly, because a broad jet of
air retains its velocity longer than a narrow one, and so strikes the lip with higher
speed. Thus a lowering of pressure can be compensated by increasing the width of
the slit.
When the pallet under a pipe is opened, the blast of air does not rise to its full speed
or full pressure at once. Thus a pipe which has been adjusted to give complete
resonance when the pressure has attained its full value will not usually be in good
resonance while the pressure is building up to this value. Indeed, during this interval
we frequently hear edge tones which are quite different from the natural note of the
pipe—sometimes the octave or twelfth, and sometimes an even shriller chirping
sound, which seems to consist of high harmonics of the lower edge tone produced by
the lower pressure. Some of the older continental organ-builders appear to have
looked on the presence of this tone with favour, possibly because they did not know
how to eliminate it. The modern voicer usually tries to suppress it, sometimes by
filing a number of small notches or nickings in the tongue of the pipe. These
increase the effective width of the slit at the points at which they occur, and so give a
stronger air blast at these points. In some cases these may compensate for the defect
pressure, so that the exact edge-tone needed to set up resonant vibrations is present
almost from the outset, and the speech may be so prompt that the discordant edge
tones are not heard at all. In other cases the phenomenon cannot be so simply
explained.



Stopped and Open Pipes

Flue-pipes may be either "stopped" or "open". In a stopped pipe, the end remote
from the mouth is closed by a tight-fitting stopper. There can be no motion of the air
here, so that this end of the pipe is necessarily a node, while the mouth, at which
there can be no variations of pressure, is a loop. Thus the possible modes of free
vibration for the air inside a stopped pipe are those shewn in the above scheme (fig.
48).

Fig. 48. The modes of vibration of a stopped organ-pipe. The displacement at any point is represented by the
distance between the thick curve and the horizontal line nearest it.

For the first mode of vibration, the wave-length is four times the length of the pipe.
This gives the fundamental note of the pipe. For the second mode, the wave-length is
only a third of that of the fundamental mode, so that the frequency is three times that
of the fundamental, and the note sounded is the third harmonic of the fundamental.
The other modes of vibration sound the fifth, the seventh, the ninth harmonic, and so
on. Thus a stopped pipe emits odd-numbered harmonics only, like a string plucked at
its middle point.
If we now remove the stopper from the pipe, we shall find that the pipe emits the
even-numbered harmonics only, the odd-numbered harmonics disappearing as soon
as the stopper is withdrawn. The reason for this is that the open end of the pipe is no
longer a node, but has become a loop because the pressure is that of the outside air.
The scheme of vibration is now that shewn in fig. 49.



Fig. 49. The modes of vibration of an open organ-pipe.

If we forget that our pipe ever had the stopper in it, we shall think of the top
vibration (marked 2) as the fundamental note of the open pipe, although it is of
course the octave of the fundamental note of the stopped pipe. The other modes of
vibration (marked 4, 6, 8, etc.) now appear as the second, third, fourth, etc.,
harmonics of this new fundamental note, so that the pipe is sounding all the
harmonics of its own fundamental note.
This, however, is only approximately true. In the first place, the open end of a pipe is
not exactly a loop; we must go a short distance beyond the open end to become
entirely clear of the constraining influence of the pipe and find a pressure precisely
equal to that of the free air. Thus the loop lies a short distance beyond the actual end
of the pipe, and the wave-length of the note sounded is slightly more than double the
length of the pipe. This small addition to the effective length of a pipe is known as
the "open-end correction"; for a cylindrical pipe its value is found by experiment to
be approximately 0.29 times the diameter of the pipe.
In the second place, it is even less legitimate to treat the mouth of a pipe as a loop,
and a still larger "mouth correction" must be made here. According to Cavaillé-Coll,
the total correction to be made amounts to about 1-2/3 diameters for a cylindrical
pipe, whether open or stopped, and to about double the internal depth for a square
pipe, whether open or stopped. Thus an open pipe 8 feet in length and 6 inches in
diameter (diapason) gives out a fundamental note of wave-length 17 feet 8 inches,
while a stopped wooden 4-foot pipe of 6 inches depth (bourdon) gives a fundamental
note of wave-length 20 feet.

Just as in the experiment described on p. 112, the column of air in such a pipe is
capable of vibration in any number of separate parts, but the open-end and mouth



corrections introduce a complication of some consequence. This can perhaps be best
explained by a numerical example. Suppose that the air inside a pipe has a
fundamental vibration of frequency 100. When this same air vibrates in two separate
parts, these vibrations will not each have a frequency of 200, as they would if there
were no open-end and mouth corrections. For the corrections are not quite the same
for the quicker vibrations as for the fundamental tone, so that instead of having
frequencies of 200, these may have frequencies of, let us say, 202. Thus the pipe as a
whole may have frequencies of perhaps 100, 202, 305, and so on. The closeness of
the coupling will usually draw the edge tone into agreement with the fundamental
tone of the pipe, so that this will exert a force on the air of the pipe which repeats
itself 100 times a second. Fourier's theorem now shews that this may be regarded as
made up of a number of forces which repeat in simple harmonic fashion at the rate
of 100, 200, 300, ... times a second respectively. Thus what we may describe as the
higher harmonics of the edge tone will not be in perfect resonance with the higher
harmonics of the air in the pipe, with the result that these upper harmonics may only
sound feebly.
As this killing of the higher harmonics is a consequence of the open-end and mouth
corrections of a pipe, it is only pronounced when these corrections are large in
amount. In pipes of very small diameter, the corrections are so small as to be
insignificant, and the higher harmonics are heard in abundance. For this reason, the
string-toned stops of the organ—the viol d'orchestre, viola da gamba, etc.—in which
high harmonics must figure prominently, are made of pipes of very small diameter.
On the other hand, the flute-toned stops from which high harmonics must be
excluded are usually made of pipes of large diameter. There are, however, other
ways of excluding the higher harmonics. The old German "Spitz-flöte" was formed
of pipes which were of small diameter, but tapered very considerably at the top, this
giving an open-end correction which was very large, because conditions were a good
step on towards those of a stopped pipe. The Boehm flute as usually played in the
orchestra employs the same artifice, its tube being constricted internally near the
mouth. The tones of the highest register of all on this instrument are found on
analysis to be almost pure tones without harmonics, as might be expected since the
diameter of the vibrating column of air is comparable with its length.
The proportion in which the different harmonics occur in the note emitted by any
pipe, open or closed, depends on other factors also, especially the wind pressure and
the height and shape of the mouth of the pipe. By increasing the wind pressure or
lowering the mouth of a pipe, or even by sharpening its upper lip and so lowering its
resistance to the air-blast, the organ-builder can increase the speed with which the air
jet strikes the lip of the pipe, and so raise the pitch of the edge tone. This procedure
naturally increases the strength of the upper harmonics; if it is carried to extremes
the fundamental note may disappear altogether, so that an open pipe will speak its
octave, and a stopped pipe its third harmonic, the twelfth. In general, mouths which
are cut low give notes which are rich in all the harmonics if the pipes are open, and
in all the odd-numbered harmonics if the pipes are stopped. Registers of stopped



pipes are found, especially on continental organs (Quintaten, Quintadena, etc.), in
which an effort is made to obtain a large proportion of the third harmonic (twelfth).
Similarly, registers of open pipes are found in which the octave is developed to a
high degree. Open "harmonic" pipes have a small hole bored at a point half-way
along the pipe, so that this point becomes a loop, and the pipe sounds mainly its
octave, the fundamental being heard only as a faint growl. There are also harmonic
stopped pipes (Zauberflöte, etc.), in which a hole is bored at a little more than half
(usually about nine-sixteenths) of the length of the pipe above the mouth. Again the
fundamental tone almost disappears, but in this case the pipe speaks its twelfth.
On the other hand, a pipe with high mouth and blunt upper lip can be made to give a
tone from which the higher harmonics are almost absent—pure flute tone.

Reed Organ-Pipes

The pipes so far discussed produce their sound in the same way as the flute and
piccolo of the orchestra, namely through a column of air being excited into vibration
by an edge tone. The organ also contains other pipes in which the production of
sound is like that in the clarinet or oboe of the orchestra, the column of air inside the
pipe being set into motion by the vibration of a reed.
The reed is rather like the reed of an ordinary harmonium. This consists of a spring
of metal which is screwed down tightly at one end A (fig. 50), and is shaped to fit
closely into an aperture in a rigid piece of metal, which lies between a lower wind-
chest W, and an upper wind-chest C. When the appropriate stop of the harmonium is
drawn, air under pressure fills the wind-chest W and spreads round the reed into the
upper wind-chest C. In the top of this latter chest is a second opening, which is
normally covered by a felted block of wood D. When the appropriate key of the
harmonium is depressed, the block D is raised and air under pressure escapes from
C. As the reed now has a greater pressure of air below than above, it is forced
upwards, air rushing past it from the lower wind-chest W to the upper wind-chest C.
But before the pressures in the two chests have become fully equalised, the elasticity
of the reed carries it back to its original position, so that the flow of air is checked
and the pressure in W again increases. By a continued repetition of this process, the
reed is set into violent vibration, with a period equal to that of its free vibration.



Fig. 50. The reed of the harmonium.

The reed of an organ-pipe differs from this mainly in being just too large to fit into
the metal aperture, and so lies against it, striking it at intervals. For this reason it is
called a "striking" reed, while the harmonium reed is described as a "free" reed. Also
the valve which sets the reed in action is not above the reed as in fig. 50, but is inside
the wind-chest W.
This arrangement leaves the farther side of the reed free, and a pipe is placed here of
such length and shape that the period of its free vibration coincides approximately
with that of the reed. When the reed is set into vibration, the air in the pipe, being in
resonance with it, is also set into vibration, and speaks with a clear firm note.
It is this resonating pipe which is responsible for the essential difference between the
tone of the harmonium and that of the organ. The reeds of both instruments have one
principal free vibration, and a number of others which, as is usual in solid structures
of metal, are discordant with this. When the harmonium reed speaks, all these tones
are heard together and produce a discordant noise. In the organ, the main body of
sound does not come from the reed, but from the air in the pipe. This is in resonance
only with the main vibration of the reed, so that it reinforces this particular vibration
alone, and what we hear is this vibration combined with the harmonics of the pipe. If
the pipe is skilfully designed, these will form a concord.

Fig. 51. A reed-pipe of an organ. The complete pipe is shewn on the right, a section of the lower part containing
the reed on the left.

Ellis has made a mathematical investigation of the proportion in which the different
harmonics will be heard. He finds that in cylindrical pipes only the odd-numbered
harmonics are reinforced by resonance; this explains why the pipes of the clarinet



stop, as also the tubes of the orchestral instrument, are made cylindrical. A conical
pipe on the other hand makes no such discrimination, odd and even harmonics being
equally reinforced; for this reason the pipes of the oboe, trumpet, tromba, etc., and
the tubes of the instruments they imitate, are made conical in shape. If a brilliant
tone is desired, the reed motion itself must supply plenty of higher harmonics to be
reinforced by resonance; this is why the organ-builder uses a "striking" reed in
preference to a free or harmonium reed, the sudden stoppage of the air jet providing
exactly the high harmonics needed. In old organs this stoppage was absolutely
sudden, so that the upper partials were exceedingly prominent, producing a fiery, but
also very harsh, tone. The modern organ-builder prefers to curve his reed at the end,
so that it does not "strike" and cut off the air jet quite suddenly, but rather unrolls
itself and cuts off the air jet gradually. This makes the upper partials less prominent,
and the tone smoother and less fiery.
Early writers on the action of flue-pipes pictured the edge tone as being produced by
the vibrations of a "reed of air". Although this view must now be discarded, it is
obvious that the formation of eddies of air on alternate sides of the lip have much the
same effect as the in-and-out motion of a reed. In the flue-pipe, these eddies and the
air in the pipe form a coupled system. In the reed-pipe, the reed and the column of
air form a coupled system. The column of air is still the predominant partner, but as
its predominance is not so marked as in the flue-pipe, a change in the frequency of
vibration of the reed has a marked effect on the pitch of the note emitted by the pipe
as a whole. So much is this the case that reed-pipes are usually tuned by altering the
frequency of the free vibrations of the reed.
We have already seen that any change of temperature alters the speed of sound in air
very appreciably—by about 1.1 feet a second, or a thousandth of the whole, for each
degree Fahrenheit of change. It has, however, far less effect on either the dimensions
or the elasticity of wood or metal. Thus when the temperature changes, we may
almost disregard any change produced in the dimensions of pipes or resonators, or in
the size and elasticity of reeds. The only thing that changes appreciably is the
column of air in each pipe, and the frequency of its vibrations will change in exactly
the same ratio as the speed of sound. For instance, a rise of 30 degrees Fahrenheit
will increase the frequency by 3 per cent. of the whole, and this sharpens the pitch
by half a semitone. The flue-pipes of the organ all have their pitches changed to
approximately the same extent, and so stay fairly well in tune with one another;
actually small pipes are slightly more affected than large by changes of temperature.

The resonators of the reed-pipes also change in exactly the same way, but as the
reeds themselves remain practically unaffected by the change of temperature, they
pull down the frequency of the complete pipe, with the result that the instrument as a
whole sounds out of tune.
If there is a uniform rise of temperature throughout the instrument, the flue-pipes
will stay in tune with one another, and as they form the main body of the instrument



the performer may think that the instrument has stayed in tune except for the reeds
which appear suddenly to have gone flat.
If, however, flue-pipes stand in parts of the organ which are at different
temperatures, even these will go out of tune with one another. This is a reason for
leaving the swell-boxes open after playing, so that the whole organ shall be at a
uniform temperature for the next performance, since air imprisoned in a closed
swell-box cannot follow the temperature changes of the outer air.

Orchestral Wind Instruments

Practically all wind instruments are similar, in the general method of their operation,
to one or other of the two classes of organ-pipes we have just described, so that it is
hardly necessary to discuss the workings of each instrument in detail. There is,
however, one general question that must be touched upon.
Organ-builders usually specify the precise nature of the metal or wood of which their
pipes are to be built, the reason being that the quality of tone depends on the material
of the pipe. For instance, pipes of wood produce a heavier, but also a warmer and
more mellow, tone than pipes of metal, while pipes of nearly pure tin produce a
richer tone than pipes of cheaper metal. The same is even more true of orchestral
instruments; a silver clarinet sounds very different from one of wood, just as an
orchestral flute sounds different from a penny whistle.
If the sound were produced merely by the vibration of a column of air, such
differences as these could not arise; the air would vibrate in the same way no matter
what material was used to enclose it. The fact that differences of timbre can be heard
shews that the pipe must itself contribute something to the production of the sound.
The pipe has of course its own free vibrations, their frequencies depending naturally
on the material of which it is made. Clearly, then, some of these must be reinforced
by resonance with the vibrations of the column of air.
Sound is known to travel much faster in solids than in air; we have, for instance:

Velocity of sound in air =   1,100 feet a second
"              lead =   4,100         "
"              tin =   8,300         "
"              oak = 14,000         "
"              Norway spruce = 16,000         "

Thus a pipe of wood or metal will in general have vibrations of much higher
frequencies than the column of air it contains, and if the vibrations of the pipe are in
resonance with any of the harmonics of the air, these latter must be quite high



harmonics. Thus the free vibrations of the pipe itself constitute a sort of formant
similar to the formant of the violin described on p. 104.
In the wind instruments of the orchestra, the same pipe is used to produce notes of
very different pitch, but the formant, which depends only on the structure of the pipe
itself, remains always the same. Clearly the formant has much to do with the
characteristic timbre of the instrument; some writers even claim that the timbre of
the instrument is completely dominated by it.
Fig. 52, which has been compiled from experiments by Hermann-Goldap, shews the
formants heard when certain instruments are played. The range of fundamental notes
is shewn by the thick line to the left, that of the formant by the dotted line on the
right. The numbers over the latter lines give the intensity of the notes of the formant
in terms of that of the fundamental note; this increases as we pass down the table,
being smallest for the clarinet and flute and greatest for the trumpet and oboe.

The presence of these higher harmonics is clearly seen in the wave-forms of the
instruments in question. The photographs shewn on Plates VIII and IX were all
taken by Professor Dayton Miller, and are reproduced by his courtesy. They shew the
sound-curves of notes of the flute, the oboe, the saxophone and the clarinet, played
under various conditions.

Fig. 52. The formants of various orchestral instruments.

Fig. 1 on Plate VIII shews the sound-curves of the note b′ played p, mf and f on a
flute. The topmost curve, obtained by blowing the instrument softly, is almost a pure
simple harmonic curve, shewing that the fundamental tone predominates. The
middle curve obtained by playing mf is of less regular shape, shewing that harmonics
are superposed on to the fundamental tone, when the instrument is blown louder.
Finally the bottom curve, produced by playing f, contains still more harmonics; exact
analysis shews that the second and third harmonics predominate.

 Fig. 2 on the same plate shews the sound-curve of middle C played on an oboe, and
fig. 1 on Plate IX shews the sound-curve of G♯ played on a saxophone. In both these



curves, the deep and close indentations of the curve indicate the admixture of high
harmonics in great strength.
In fig. 2 on this plate the upper curve is the sound-curve of middle C of frequency
257, played mf on a clarinet. It is much smoother than the two preceding curves of
the oboe and saxophone, shewing that the higher harmonics are not present in any
great strength. But clarinet tone is not always as smooth as this. The lower curve in
the same figure was produced by playing the same note on a different clarinet. We
see sequences of very deep indentations, which occur intermittently, one series
occurring for each wave of the fundamental tone. This is exactly what we should
expect from the beats of near or consecutive harmonics. Careful measurement shews
that 11½ of these short depressions occupy the same length of curve—i.e. of time—
as a single wave of the fundamental tone, so that we may tentatively identify the
beating harmonics as the eleventh and twelfth (approximately f♯iv and giv). Professor
Miller has verified this identification by analysing the sound-curve into its various
harmonic constituents. He finds that the relative amplitudes of the different
components are as follows:

First harmonic   c′  =   29   Second harmonic c″ =   7
Third      "    g″ =   20   Fourth        "   c‴ =   1
Fifth       "    e‴  =   2   Sixth          "   g‴ =   6
Seventh  "   b♭‴ =   6   Eighth        "   civ =   8
Ninth      "     dv  =  16   Tenth         "   eiv =   9
Eleventh "   f♯iv = 30   Twelfth      "   giv = 35



PLATE VIII

Dayton C. Miller
ig. 1. Sound-curves of a flute played p (top), mf (middle) and f (bottom). The note is b′ of frequency 488.

Dayton C. Miller
Fig. 2. The sound-curve of an oboe, played mf. The note is middle C of frequency 254. The two time-scale marks

half way up the photograph are 1/100 second apart.

SOUND-CURVES OF FLUTES AND OBOES



PLATE IX

Dayton C. Miller
Fig. 1. The sound-curve of a saxophone. The note is G♯ of frequency 209.

Dayton C. Miller
Fig. 2. The sound-curves of middle C played on two different clarinets.

SOUND-CURVES OF SAXOPHONES AND CLARINETS



It is of interest to notice that the eleventh and twelfth harmonics, of frequencies 2827
and 3084, are both stronger than the fundamental note of frequency 257, and as the
ear is many times more sensitive to notes of the higher frequencies than to notes of
the lower, the sound which the ear perceives must consist almost entirely of tones of
these higher frequencies. We see from fig. 52 that these higher tones are close up to
the range of the formant.



[E]

[F]

FOOTNOTES:
In the most convenient form of the experiment, known as Kundt's experiment, the

tuning-fork is straightened out to form a metal rod—its longitudinal vibrations are then of
far higher pitch than those of the ordinary fork, so that a comparatively short length of
tube will serve.

It may seem paradoxical that T is a node, although the loose stopper is moving
backwards and forwards, keeping the air in motion there. The explanation is that the
stopper has a far greater weight than all the air in the tube, so that a quite small motion of
the stopper imparts enough energy to the air to keep it in violent agitation. Thus the
amplitude of the stopper is small compared with that at other parts of the tube, and T is
virtually a node, or very nearly so.



CHAPTER V
HARMONY AND DISCORD

In the present book, we are dealing with subjects which lie partly within the province
of science and partly within that of art, and the boundary between the two provinces
is not always perfectly clear. If the question is debated as to whether the music of
John Sebastian Bach is superior to that of his son Philipp Emanuel, science can bring
nothing to the discussion. The question is purely one for artists, and it is quite
conceivable, although perhaps rather improbable, that they may not be able to agree
as to the answer. On the other hand, if the question is whether the music of either
Bach is superior to that produced by a chorus of cats singing on the roof, there will
be little doubt as to the answer. The artists will all agree, and science is able to
explain to a large extent why they agree.
To say the same thing in another way, the aim of music is to weave the elementary
sounds we have been discussing into combinations and sequences which give
pleasure to the brain through the ear. As between two pieces of music both of which
give pleasure in a high degree, only the artist can decide which gives more, but the
scientist can explain why some give no pleasure at all. He cannot explain why we
find Bach specially pleasurable, but he can explain why we find the cat music
specially painful. And this brings us to the subject of the present chapter—why is it
that some combinations of sounds are agreeable to the ear, while others are
disagreeable?

Through Beats to Discord

On p. 49 we imagined two tuning-forks sounded together. The pitch of one was kept
fixed at 261 vibrations to the second, while the pitch of the other started at 262, and
was gradually raised. As the pitch rose beats were heard, for a time, but subsequently
could no longer be distinguished as such. The sound of the combined tones began by
being pleasant to the ear, but as the number of beats per second increased, it
gradually became more unpleasant. The unpleasantness reached a maximum when
there were about 23 beats to the second, and then began to decline. Brues, extending
the experiment into the region in which beats can no longer be distinguished, finds
that the decline is only slight, and that, broadly speaking, the unpleasantness remains
at a fairly uniform level until the octave of frequency 522 is reached, at which point
it suddenly disappears.



If the same experiment is performed with violin-strings, very different results are
obtained. The unpleasantness no longer stays at a fairly uniform level, but fluctuates
wildly. It almost vanishes at the interval of a major third, and again at the interval of
a fourth, while it disappears completely at the intervals of the fifth and octave. At the
exact points at which these minima of unpleasantness are reached, the frequency
ratios of the variable to the fixed tone are found to have the simple values 5:4, 4:3,
3:2 and 2:1.

Concord associated with Small Numbers

It is found to be a quite general law that two tones sound well together when the
ratio of their frequencies can be expressed by the use of small numbers, and the
smaller the numbers the better is the consonance. This will be clear from the
following table, in which the intervals are arranged in order of increasing
dissonance:

Interval Frequency ratio Largest number
occurring in ratio

Unison
Octave 
Fifth 
Fourth 
Major Third 
Major Sixth 
Minor Third 
Minor Sixth 
Second

1:1
2:1
3:2
4:3
5:4
5:3
6:5
8:5
9:8

1
2
3
4
5
5
6
8
9

and so on.
In brief, the farther we go from small numbers, the farther we go into the realms of
discord. This was known to Pythagoras 2500 years ago; he was the first, so far as we
know, to ask the question, "Why is consonance associated with the ratios of small
numbers?" And although many attempts have been made to answer it, the question is
not fully answered yet.
The central Pythagorean doctrine that "all nature consists of harmony arising out of
number" provided of course the simplest of all answers, but only by building on an
unproved metaphysical basis. An answer on equally uncertain foundations was given
by the Chinese philosophers of the time of Confucius, who regarded the small
numbers 1, 2, 3, 4 as the source of all perfection.



Euler's Theory of Harmony

In 1738 the mathematician Euler attempted an explanation on psychological lines,
saying that the human mind delights in law and order, and so takes pleasure in
discovering it in nature. The smaller the numbers required to express the ratio of two
frequencies, the easier it is—such was his argument—to discover this law and order,
and so the pleasanter it is to hear the sounds in question. Euler went so far as to
propose a definite quantitative measure of the dissonance of a chord. His plan was to
express the frequency ratio of the chord in question by the smallest numbers
possible, and then to find the smallest number into which all these could be divided
exactly. This last number, he thought, gave a measure of the dissonance of the chord.
For example, the frequency ratio of the notes of the common chord C E G c′ is
4:5:6:8. The measure of dissonance is accordingly 120, since this is the smallest
number of which 4, 5, 6 and 8 are all factors.
It is easy to criticise this theory from all sides. In the first place it fails to explain the
facts, since it assigns the same measure of dissonance, namely 120, to the chord of
the seventh C E G B (with frequency ratios 8:10:12:15) as to the far less dissonant
common chord. Again if we put one note, say E, out of tune by one per cent. of its
frequency (about a sixth of a semitone) we increase Euler's measure of dissonance
100-fold; if we now reduce the out-of-tuneness to a tenth of this, we increase the
measure of dissonance another tenfold. If one note is only infinitesi mally out of tune,
the measure of dissonance at once shoots up to infinity, which is a complete reductio
ad absurdum. Finally, Euler's theory fails to explain why we enjoy hearing the
common chord, with its 120 units of annoyance, when we could reduce the
annoyance to 24 units by dropping E out of the chord, and could eliminate the
annoyance altogether by sitting in silence. It must be admitted, however, that this is a
defect of most theories of discord. Innumerable theories are ready to tell us the
origin of the annoyance we feel on hearing a discord, but none even attempts to tell
us the origin of the pleasure we feel on hearing harmony; indeed, ridiculous though
it may seem, this latter remains one of the unsolved problems of music.
If we were compelled to attempt a solution, it would perhaps be somewhat on the
following lines. The exercise of any of his faculties gives pleasure to a healthy being
—otherwise he would never attempt crossword puzzles or mountain ascents—and
the greater the use made of the faculty the greater the pleasure, at any rate within
limits. We like to hear CG rather than C because the irritation produced by the very
slight discordance of the notes is far less than the pleasure added by the hearing of
the G. On the other hand, we do not enjoy hearing CC♯, because the annoyance is so
great that the balance swings in the opposite direction.

D'Alembert's Theory of Harmony



So far all theories of harmony had been either arithmetical or metaphysical. The first
attempt at a physical theory of harmony originated with another mathematician,
d'Alembert (1762), who admitted his indebtedness to some earlier speculations of
Rameau (1721). Their theory was based on the fact that every fundamental tone
heard in nature is accompanied by its second harmonic (the octave), by its third
harmonic (the twelfth), and so on. The interval between the octave and twelfth being
a fifth, they argued that it was "most consonant to the scheme of nature" that two
notes a fifth apart should sound together, and so on.

Helmholtz's Theory of Harmony

Then Helmholtz (1862) developed a theory of consonance and dissonance in terms
of beats—a theory which has been much discussed and criticised, but still holds the
field to-day. We have already seen that C and C♯ sound badly together because they
make unpleasant beats. In the case of wider intervals such as C and F♯ there are no
beats to be heard, either pleasant or unpleasant, but Helmholtz asserted that C and F♯
sound badly together because certain of their harmonics (e.g. g′ and f′♯) make
unpleasant beats. On the other hand C and G sound well together because few of
their harmonics beat badly:

C  c′  g′  c″  e″  g″ etc.

G  g′  d″ g″  b″ d‴ etc.

indeed many harmonics are common to both notes. On this theory the octave
becomes the most perfect of all concords, since none of the harmonics can possibly
beat worse than when one note is sounded alone. The theory is sometimes stated in
the slightly different form that two notes sound well together when, and because,
they have certain harmonics in common, but this form of statement overlooks the
annoyance which may be introduced by such harmonics as are not possessed in
common.
The theory explains at once why the dissonances of tuning-forks (p. 153) are so
completely different from those of musical instruments—the tuning-forks have no
upper harmonics to make beats with one another.
A few simple experiments with orchestral instruments, or at the keyboard of the
organ, will convince us of the essential soundness of the theory. If we draw a flute-
stop, and sound the chord C E G c′, we hear no perceptible dissonance. If we now
sound the same chord on a stop in which the harmonics are more developed than in
the flute, the dissonance is more marked; the dissonance must have been introduced
by the harmonics, since nothing else has been added which could have introduced it.
It is noticeable on the diapason, and becomes unpleasant on the trumpet or clarinet.
Finally it becomes intolerable on the mixture, a stop which consists of harmonics
and nothing but harmonics; we shall, for instance, hear c″ (the second harmonic of



c′) beating badly with b′ (the third harmonic of E), and g″ (the third harmonic of c′)
with g♯″ (the fifth harmonic of E). If we hold the chord C E G c′, and add suitably
chosen stops in succession, we shall hear the dissonance growing pari passu with the
harmonic development.
It is the same in the orchestra; chords which sound well on the flutes or strings are
impossible on oboes and clarinets. We understand the reason for this as soon as we
notice the rich harmonics shewn in Plates VIII and IX.
Helmholtz attempted to test his theory by calculating the amount of dissonance it
implied for different intervals. He first assumed a law, somewhat arbitrarily, for the
amount of dissonance produced by the beats of two pure tones at an assigned
distance apart, and was then able to calculate, by simple addition, the total
dissonance produced by all the beats of all the harmonics of a pair of notes. This
naturally depended on the proportions in which the different harmonics entered into
each tone; Helmholtz assumed the proportion to be that of violin tone.

Fig. 53. The degree of dissonance, as calculated by Helmholtz, of two violin tones sounding together. The lower
tone c′ sounds continuously, while the upper tone moves gradually from c′ to c″.

The result of his calculation is shewn in fig. 53. One violin-string is supposed to
sound c′ continuously, while the pitch of the second ranges from c′ to c″. The degree
of dissonance at any point is shewn by the height of the curve above the horizontal
line in fig. 53. Obviously the main consonances and dissonances within the octave
are reproduced with remarkable fidelity.
A still better test can be made by employing the exact experimental results of Brues
to give the dissonance of pure tones, but the final result is much the same as that just
given.

The Origin of the Musical Scale

With all this in our minds, let us try to imagine how the different musical scales may
have come into being. No one seems to know precisely how music itself came into
human life, but it probably was through either stringed instruments or wind
instruments. Primitive man may have enjoyed the rhythm he could make by



pounding sticks together, or even by beating primitive drums, which he may have
used for marking time for dances or marches, but it seems likely, as already
suggested, that he first discovered the pleasures of tonal music by hearing vibrating
strings—perhaps the twang of his bowstring—or sounding pipes, such as the wind
whistling over the top of a broken reed. Ancient drawings and reliefs shew him, in
the infancy of civilisation, playing both on the lyre and on pan-pipes or syrynxes. At
Ur Sir Leonard Woolley unearthed the remains of an eleven-stringed lyre, which
proves that 5000 years ago or more, man had already passed from the enjoyment of a
single musical sound to that of a succession of sounds. Two pictures of bands of
Sumerian musicians of 4600 years ago are reproduced as the frontispiece of this
book, and explain themselves. An Egyptian painting of about 2750 B.C. shews a
complete orchestra of seven players, two of whom are playing on stringed
instruments and three on wind instruments, while two in the middle seem to be
engaged in clapping their hands as though to beat time—the discovery that the right
number of conductors to an orchestra was one had yet to come, but mankind of 5000
years ago was at least acquainted with melody. He may even have been acquainted
with harmony as well, although this is far from certain. For in the most primitive
civilisation of all, music seems always to have been homophonic (one-part), as it still
is to some extent among the Chinese, Indians, Turks, Arabs and even Greeks of to-
day.
In time, however, the idea must have occurred to sing or play two or more notes at
once—possibly because it was impossible for men and boys to sing together in the
same pitch, or possibly because one-part music began to pall. Up to now, the exact
pitches of the notes selected to form the scale had been almost a matter of
indifference; from now on it was important that two or more notes of the scale could
be sounded together without undue dissonance. Even to-day, many of the races
which have not advanced beyond homophonic music—as for instance the Arabs,
Persians and Javanese—use scales whose notes are not at all consonant; the
dissonance is harmless because two notes are never heard together. On the other
hand, even primitive races whose music is polyphonic use scales in which most
intervals are consonant.
The octave, the simplest and most perfect consonance of all, must have been
discovered at a very early stage; it is fundamental in the music of all peoples, even
the most rudimentary. The early Greeks seem to have employed no other concord in
their music, although they were certainly acquainted with others. Aristotle tells us
that the voices of men and boys formed an octave in singing, and asks "Why is only
the consonance of the octave sung, for this alone is played on the lyre?" He suggests
that other consonances were not in favour because "both tones are concealed, one by
the other", and compares part-music to many speakers "who are saying the same
thing at the same time, when we should understand a single speaker better", which
seems to suggest that he did not possess a true polyphonic ear.



Nevertheless, the time was bound to come when incessant movement in octaves was
found sterile and uninteresting—witness the scholastic prohibition of consecutive
octaves, which was subsequently extended to consecutive fifths also. We can
imagine our primitive musician discovering the consonance of the fifth c-g, possibly
first introduced, as some have thought, in the form of a descending fourth, c′-g or f-
c. This, with the octave, would give a set of four strings c f g c′, of which any two
except f g could be played together without creating unpleasantness. Nicomaeus tells
us that down to the time of Orpheus, lyres were tuned to sound these notes.
The possessor of such a lyre would still have no great variety of tones for melody, so
that we can imagine him increasing the number of his strings, and planning that each
new string should create no new unpleasantness, or at any rate as little as possible,
when sounded together with the already existing strings. On a lyre sounding c f g c′,
two of the strings c, c′ can be sounded with either of two new tones f and g without
creating discord; the other two strings f and g can be sounded with only one, since c
and c′ introduce the same new tone. Our pioneer might try to give another possibility
of concord to g by introducing its fifth d. The problem then repeats itself, and to find
a new and pleasant companion to d, he introduces a. So he goes on and gets a
succession of notes F-C-G-D-A-E-B etc., each of which can be sounded in perfect
harmony with either the note preceding it or the note succeeding it in the sequence.
But there is always the trouble that the first and last note have only one agreeable
companion, and so we can imagine him pressing on until finally, when he has gone
far enough, he finds his sequence repeating itself. His notes no longer form a
straight-line sequence but a circle of notes, which can be arranged like the numbers
on the face of a clock, as in fig. 54, so that each string has now two notes with which
it can sound in perfect harmony, the one in front and the one behind.

Fig. 54. The clock-face of twelve notes—the twelve semitones of the octave. Each note sounds the harmony of a
fifth when played with either of the notes next to it.

It need hardly be said that the foregoing account has been purely fictitious; if for no
other reason, because there was no single primitive man, but vast numbers of tribes
and peoples who developed music independently, and in the most varied
surroundings. But all were striving for the same goal, and the principles which



guided them—to choose pleasant noises rather than unpleasant, consonances rather
than dissonances—must have been precisely those which we have imagined guiding
our fictitious primitive man, so that they were led to much the same result as he, and
this with a unanimity which is remarkable. They exhibit enormous differences in
their language, customs, clothes, modes of life and so forth, but all who have
advanced beyond homophonic music have, if not precisely the same musical scale,
at least scales which are all built on the same principle.
The main differences are found in the numbers of notes which form the scale. By
stopping at different places in the sequence F-C-G-D-A-...,[G] we obtain the various
scales which have figured in the musics of practically all those races which have
advanced beyond the one-part music of primitive man.
The first three notes of the sequence C, F and G formed the main tones of the scale
of ancient Greece. If we proceed as far as five notes C, D, F, G, A we have the
pentatonic scale in which a considerable amount of Chinese and ancient Scottish
music is written, as well as much of the music of primitive peoples in Southern Asia,
East Africa and elsewhere; transpose it a semitone up, and we have the scale
provided by the black keys of the piano—hence the fact, beloved of school-children,
that many Scottish melodies, "Auld Lang Syne", etc., can be played without
touching the white keys at all, and that almost any sequence of notes strummed on
the black keys sounds like a Scottish melody. On taking the first seven notes, we
have the ordinary diatonic scale, which seems to have been introduced into Greece
in the middle of the sixth century B.C., was standardised by Pythagoras, and has
remained the normal scale for western music ever since. The beginnings of this scale
cannot be traced. Garstang found two Egyptian flutes, the date of which cannot be
later than about 2000 B.C.; these gave the seven-note scale C D E F♯ G A B, which is
identical with the Syntolydian scale of ancient Greece.

Finally, the full clock-face of twelve notes supplies the complete chromatic scale of
modern music.

The Problem of Temperament

This last scale is affected by a serious complication. The tones which give the best
concord after the octave have their frequencies in the exact ratio 3:2, or 1.5, as is
evident from their constituting the second and third harmonics of the same
fundamental note. Thus, for perfect concord, each step of one "hour" on the clock-
face would increase the frequency by a factor 1.5, and twelve such steps would
increase it by a factor of (1.5)12, of which the value is 129.75. We have just said that
these twelve steps bring us back to the c seven octaves above the c from which we
started. But we now see that they do not bring us back exactly; the frequency of this
last c is only 128 times that of our starting-point, so that our twelve steps slightly
overshoot the mark, and bring us to a note whose frequency is greater than that of c



by a factor of 1.0136; this interval is commonly known as the "comma of
Pythagoras", and is rather less than a quarter of a semitone.
To put the same thing in another way, we have just identified the frequency ratio 1.5
with the interval of a fifth, although our table (p. 25) gave the value as 1.4983. The
difference is only small—1.13 parts in a thousand—but by the time we have taken
the twelve steps needed to pass completely round the clock-face, it has been
multiplied twelvefold into the difference of 13.6 parts in a thousand, which
represents the aforesaid difference in pitch of almost a quarter of a semitone. When
this is allowed for, the true clock-face is that shewn in fig. 55; it extends to infinity
in both directions, and all simplicity has disappeared.

Fig. 55. The form assumed by the clock-face of fig. 54, when true fifths are used. There is now an endless series
of notes, such notes as B♯, G and D♭♭ being of different pitch.

The Pythagorean Scale

Various ways have been suggested for avoiding this complication. When Pythagoras
standardised the musical scale in mathematical terms, he did not encounter it at all,
because he did not think of his series of notes as forming a closed circle. He assigned
to his C exactly 1½ times the frequency[H] of F, to his G exactly 1½ times the
frequency of C, and so on, thus arriving at a scale with the ratios shewn in the
following table:

Pythagorean frequency
ratio Pythagorean interval Equal temperament

frequency ratio (p. 177)
C = 1.0000
 
D 9/8 = 1.1250 
  
E 81/64 = 1.2656 
 

 
Tone
 
Tone 
 
Hemitone

1.000
 
1.1225
 
1.2599 
 



F 4/5 =1.3333 
  
G 3/2 =1.5000 
 
A 27/16 = 1.6875 
 
B 243/128 = 1.8984
 
C = 2.0000

 
Tone 
 
Tone 
 
Tone 
 
Hemitone
 

1.3348
 
1.4983
 
1.6818
 
1.8877
 
2.0000

From the way in which the scale is formed, it follows, as a matter of pure arithmetic,
that the intervals C D, D E, F G, G A and A B must all be exactly equal, with a
frequency ratio of 9:8. Pythagoras described each of these intervals as a "tone", and
was left with the two smaller intervals E F and B C, each of which is represented by
the more complicated frequency ratio of 256:243, or 1.0535. Pythagoras called such
an interval a "hemitone". It is distinctly less than either the half of a Pythagorean
tone or the modern semitone, the frequency ratios being

Pythagorean hemitone = 1.0535,
Half of Pythagorean tone = 1.0606,
Equal temperament semitone = 1.0595.

 Thus the Pythagorean octave was made up of five equal tones and of two equal
hemitones, which were rather less than half-tones.

The scale was perfect and complete—so far as it went. In addition to the concord of
the octave, it contained no fewer than four fifths and five fourths, a greater wealth of
concords than can be attained from any other selection of eight notes.
The scale could of course be extended indefinitely in either direction by a process of
trespassing into neighbouring octaves. On the other hand, the severity of Greek taste
resulted in melodies being restricted to a compass of an octave—and frequently even
of a fourth—so as to employ only the best and most agreeable registers of the human
voice, so that a trespass into an upper octave involved a corresponding curtailment
of the lower octave. The normal eight-stringed lyre might begin at any note of the
scale, but it would end at the same note in the octave above. As there were seven
choices possible for the lowest note—c, d, e, f, g, a and b—this could be done in
seven ways, which were referred to as "modes". These were as follows:



Range Ancient
Greek name

Scale
(beginning with c)

Glarean's
ecclesiastical name

c-c′ Lydian c, d, e, f, g, a, b, c′ Ionian
g-g′ Ionian[I] c, d, e, f, g, a, b♭, c′ Myxolydian
d-d′ Phrygian c, d, e♭, f, g, a , b♭, c′ Dorian
a-a′ Aeolian[J] c, d, e♭, f, g, a♭, b♭, c′ Aeolian
e-e′ Dorian c, d♭, e♭, f, g, a♭, b♭, c′ Phrygian
b-b′ Myxolydian c, d♭, e♭, f, g♭, a♭, b♭, c′ Locrian
f-f′ Syntolydian c, d, e, f♯, g, a, b, c' Lydian

 Mediaeval music, and ecclesiastical music in particular, took over the Greek modes.
Originally only four were recognised as "authentic", namely, d-d′, e-e′, f-f′ and g-g′,
these having been approved by Ambrose, Bishop of Milan, in the fourth century.
Then Pope Gregory the Great added four more, which were known as Plagal.
Finally, in the sixteenth century Glarean (Dodecachordon, Basle, 1547)
distinguished twelve modes, and assigned Greek names to them, although many of
his identifications with the ancient modes were incorrect. Some of these twelve
modes had never been used at all, having been found unsatisfactory from the outset,
while others fell into disuse in the course of time. Then, sometime in the seventeenth
century, musicians began to find only two modes entirely satisfactory; they became
known as the major C D E F G A B C and the minor A B C D E F G A.
A collection of notes played in succession does not of itself constitute a melody
which can awaken our musical imagination; to satisfy modern musical feeling, there
must be a further element, which we describe as tonality. Our musical thought does
not wish to wander indifferently all over the scale; it remains associated always with
one particular note, the tonic or key note, which we somehow think of as giving a
fixed and central point. Just as the traveller thinks of each point of his journey in
terms of its distance from his home, so we moderns think of each note of a melody
in terms of its interval from the key note. The skilful composer contrives to make us
conscious of the key note from the very beginning of his music, and keeps our minds
conscious of its position through all the notes that are played. In general, for
instance, we expect the music—or at least the bass of it—to end on the key note, just
as the traveller expects his journey to end at his home; we refuse to accept any other
ending place as final. Even ancient Greek music had a sort of key note—the tone of
the middle string of the lyre; Aristotle tells us that "All good melodies often employ
the tone of the middle string, and good composers often come upon it, and if they
leave it, recur to it again; but this is not the case with any other tone."
At first the composer could give variety to his music by writing in many different
modes, but as the number of available modes decreased, he found it necessary to



impart variety in other ways. The modern musician not only writes his music in a
great variety of keys, but also, to maintain the interest at a high level, finds it
necessary to change frequently from one key to another in the same piece. He may
begin in the key of C, using as his scale the sequence of notes

C D E F G A B C,
and may very soon change to the key of G, in which his scale consists of the notes

C D E F♯ G A B C.
We can now see the first great objection to the Pythagorean scale from the standpoint
of modern music—it is impossible to modulate from one key to another because the
scale contains no F♯, and indeed no semitones at all. And it was impossible to create
them by halving the whole tone intervals, because two hemitones did not make a
tone.

A second, and hardly less weighty objection, remains. The only numbers which enter
into the frequency ratios of the Pythagorean scale are 2 and 3, with their powers
22=4, 23=8, 32=9, etc.; the numbers 5, 7, 11 do not occur at all. But the frequency
ratios of a note and its various harmonics are represented by the complete sequence
of numbers 2, 3, 4, 5, 6, 7, ..., so that most of these harmonics are not represented by
notes on the Pythagorean scale at all. And Helmholtz's theory of dissonance makes it
clear that the pleasurable consonances are the harmonics, and not the notes of the
Pythagorean scale.
To take the simplest instance, the fifth harmonic of C has five times the frequency of
the fundamental. But the nearest note on the Pythagorean scale, e″, has a frequency
81/16 or 5.06 times that of the fundamental C, and so is about a fifth of a semitone
out of tune with the fifth harmonic of C. If we sound C, this latter insists on
sounding anyhow, for we have seen (p. 83) that the natural harmonics alone are
forced by resonance, and makes considerable discord with the Pythagorean e″. Thus
the note that our ear wants to hear sounding with C is not the Pythagorean e but the
harmonic e.
It will be clear from what has already been said that these complications are
absolutely fundamental; they arise out of the laws of arithmetic, which the musician
is completely powerless to alter. If we visited another planet, we should find the
same laws there as on earth. Here, 312 is very nearly equal to 219, which means that
12 fifths are very nearly equal to 7 octaves, and the same would be true there, so that
if the inhabitants were at about the same musical level as we are, we might expect to
find them employing the same diatonic scale as ourselves. But, there as here,
complications would arise from the two numbers not being exactly equal; they like
ourselves would have a "comma of Pythagoras", and like our own musicians might
have devoted a vast amount of thought to minimising its baneful effects.



The Mean-Tone Scale

A solution which prevailed for many centuries led to a scale known as the "mean-
tone" scale. Four steps from C on our clock-face, C-G-D-A-E, bring us to E, a third
above C. We have already seen that the frequency ratio between E and C is 5.06 on
the Pythagorean scale, whereas the pleasurable ratio is 5.00. The bearings of the
mean-tone system were laid by diminishing each of the four steps C-G, G-D, D-A
and A-E equally by such an amount as gave the exact frequency ratio 5.00 to the
interval C-E. Each of these steps was accordingly represented by a frequency ratio of
51/4 or 1.49527, in place of the ratio 1.5 which characterises the exact fifth. The two
quantities differ by about 3.15 parts in 1000. Each "hour" of the clock-face was
accordingly in error by one 3.15 parts in a thousand, and the accumulation of twelve
such errors amounted to 38 parts in a thousand, which is well over three-fifths of a
semitone. When the scale was laid out as in fig. 56, the interval G♯-E♭ proved to be
one of 7.395 equal tempera ment semitones, which is three-eights of a semitone more
than the exact fifth (7.020 equal temperament semitones)—it was accordingly
known as the quinte-de-loup or "wolf-fifth", wolves being howling animals.

Fig. 56. The clock-face on the mean-tone scale.

Howling effects such as this could only be kept out of the music by carefully
choosing the key in which a composition was written. By making slight departures
from the mean-tone system, it was found possible to tune the notes so that music
played in one key should sound harmonious, while that in a few other and nearly
related keys did not sound too bad. For the rest, musicians simply had to avoid
writing or playing in the more remote keys; they were virtually limited to three
sharps or two flats, unless indeed instruments were specially arranged for them.
Organs were sometimes built in which two black keys were interpolated between D
and E, one sounding D♯ and the other E♭; and other notes were often treated in the
same way. For instance, the organ which was built for the Foundling Hospital by
Thomas Parker in the year 1768, "upon the new principle invented by the late Doctor
Smith (Master of Trinity College, Cambridge)", contained devices for replacing the



C♯, G♯, E♭, B♭ pipes by others sounding D♭, A♭, D♯ and A♯, the scheme
accordingly being that shewn in fig. 57.
The general principles of the mean-tone system were foreshadowed by Schlick
(Spiegel der Orgelmacher und Organisten, 1511), who suggested tuning the fifths
FC, CG, GD, DA "as flat as the ear could endure", so that the third FA should
"sound decent". In its more precise form the system seems to have been the
invention of a blind Spanish musician Francis Salinas who lived the greater part of
his life in Italy, and described the exact mean-tone system in his De Musica Libri
Septem (1577). Gradually, but only very gradually, it was superseded by the system
of "equal temperament", which had been proposed at an even earlier date, 1482, by
another Spaniard, Bartolo Rames.

Fig. 57. The clock-face on the mean-tone scale, with four extra notes added, to make it possible to play in several
keys.

The Equal-Temperament Scale

In this system the "comma of Pythagoras" is distributed equally over the twelve
intervals which make up the circle on the clock-face. As the comma is about a
quarter of a semitone, this involves flattening each interval of a fifth by about a
forty-eighth of a semitone. Or to be more precise, since the twelve steps round the
clock-face are to represent an interval of exactly seven octaves, and so a frequency
ratio of 128:1, each step must represent a frequency ratio of 1281/12 or 1.4983. All
semitones are now equal, and, as already explained on p. 25, each represents
precisely the same frequency ratio, 1.05946. Although these frequency ratios had
been correctly calculated by the French mathematician Mersenne, and published in
his Harmonie Universelle as far back as 1636, the system does not seem to have
been employed in practice until late in the seventeenth century, when it began to be
used in North Germany. The first occasion on which we hear of its use is in the
famous organ which Arp Schnitger built for S. Jacobi at Hamburg in 1688-92; this is
said to have been tuned by the builder to something which at least approached to



equal temperament. J. S. Bach subsequently advocated the system; not only were his
own clavichord and harpsichord tuned to it, but he wrote the well-known "forty-
eight" (Wohltemperiertes Klavier) to prove that it enables compositions in all keys to
be played without disagreeable discords. Yet even he was unable to convert
contemporary organ-builders to the new system, and there seems to be no doubt that
the organs of his day were usually tuned to the mean-tone system. This doubtless
explains why Bach seldom wanders into the more remote keys in his organ works, in
striking contrast to his compositions for the clavichord.
After the death of J. S. Bach, his son Philipp Emanuel Bach started an active
campaign in favour of equal-temperament tuning, but its adoption was slow, and
especially so in England; it was not until about the middle of the nineteenth century
that English pianos began to be tuned to equal temperament, and not a single one of
the English organs shewn in the Great Exhibition of 1851 was so tuned.
The equal-temperament system is now in universal use for keyed instruments, and
has the great advantage that music can be played equally well in all keys. On the
other hand its defects are many. The most obvious is that of all the seventy-eight
intervals that lie within the range of a single octave, not a single one is in perfect
tune; every one could be improved if there were not the others to think about. The
pianist and organist accept this accumulation of lesser evils in order to escape the
major evils of badly discordant intervals. But the violinist and singer are under no
such necessity; as each interval comes along, they can make it what they like, and so
naturally tend to make it that which gives most pleasure to the ear. Observations
shew that the intervals which such performers produce when they are left to
themselves differ greatly from those they produce when accompanied by an
instrument tuned to equal temperament.

Just Intonation

An attempt to standardise the former intervals has led to the introduction of yet a
further system, known as the system of "just intonation". This is limited to one
single key, and aims at making the intervals as accordant as possible with both one
another and with the harmonics of the key note and of the closely related tones.
The ratios chosen are shewn in the following table:
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It will be seen that most of the frequency ratios can be expressed in terms of
comparatively small numbers, indicating consonant harmonies.
On the other hand the whole tones are not all equal, some, known as major tones,
having a frequency ratio of 9/8 (1.125), while others, known as minor tones, have a
frequency ratio of only 10/9 (1.111). The two semitones have the same frequency
ratio of 16/15, but this is more than half the frequency ratio of any full tones, since
(16/15)2=1.138. The second column of the following table shews the intervals of just
intonation for the scale of C; while adjacent columns give the harmonics of C, G, D,
F and A on this scale, and also the intervals on the mean-tone and equal-
temperament scales.



Frequency ratios in scale

Note
Just intonation

Mean
tone

Equal
temper.Scale

of C
Harmonies of

C G D F A
C 1.000 1.000 1.031 0.985 1.000 1.042 1.000 1.000
C♯ — — — — — — 1.045

1.059
D♭ — — — — — — 1.070
C* — — — — — — 1.092

1.122D 1.125 1.125 1.125 1.125 — 1.146 1.118
E♭♭ — — — — — — 1.145
D♯ — — — — — — 1.168

1.189
E♭ — — — — 1.167 — 1.196
E 1.250 1.250 — 1.266 — 1.250 1.250

1.260
F♭ — — — — — — 1.280
E♯ — — — — — — 1.306 1.335
F 1.333 1.375 1.312 — 1.333 — 1.337  
F♯ — — — 1.406 — — 1.398

1.414
G♭ — — — — — — 1.431
F* — — — — — — 1.460

1.498G 1.500 1.500 1.500 — 1.500 1.458 1.495
A♭♭ — — — — — — 1.531
G♯ — — — — — — 1.563

1.587
A♭ — — — — — — 1.600
G* — — — — — — 1.633

1.682A 1.667 — 1.687 1.687 1.667 1.667 1.672
B♭♭ — — — — — — 1.712  
A♯ — — — — — — 1.747

1.782
B♭ — 1.750 — — 1.833 — 1.789
B 1.875 — 1.875 — — 1.875 1.869

1.888
C♭ — — — — — — 1.914
B♯ — — — — — — 1.953

2.000
c′ 2.000 2.000 2.062 1.969 2.000 2.083 2.000



The table shews that, on the scale of just intonation, C, G and A are true harmonics
of F; E, G, D of C; and B and D of G.
The frequencies given in the second column are those which would actually be
played by a violinist playing in the key of C. If, however, his music modulates to the
key of G, his A will no longer have 5/3 times the frequency of C, but 9/8 times the
frequency of G, and so 27/16 times the frequency of C; the frequency of his A
changes from 1.667 to 1.687 times that of C. Thus the pitches of his notes are not
fixed, but vary with the key in which he happens to be playing at the moment.
The classical observations on this subject are due to Delezenne and Helmholtz. The
latter wrote:

That performers of the highest rank do really play in just intonation has been
directly proved by the very interesting and exact results of Delezenne. This
observer determined the individual notes of the major scale as it was played by
distinguished violinists and violoncellists, by means of an accurately gauged
string, and found that these players produced correctly perfect Thirds and
Sixths. I was fortunate enough to have an opportunity of making similar
observations by means of my harmonium on Herr Joachim. He tuned his violin
exactly with the g d a e of my instrument. I then requested him to play the scale,
and immediately he had played the Third or Sixth, I gave the corresponding
note on the harmonium. By means of beats it was easy to determine that this
distinguished musician used b1 and not b as the major Third to g, and e1 not e as
the Sixth.

Key Characteristics

On an instrument tuned to equal temperament, the semitones are all equal, so that the
scales which represent the different keys differ only in pitch. They are completely
similar in all other respects, the frequency ratios being the same in all. We can verify
this by making a gramophone record of a chromatic octave C, C♯, D, D♯, E, ... C,
played on a piano or other instrument tuned to equal temperament, and running it
through the gramophone at 1.05946 times the speed at which it was taken. Then C
becomes C♯ exactly, the C♯ becomes D exactly, and so on, so that what we hear is
exactly the chromatic octave of C♯.
On an instrument which is not tuned to equal temperament, the semitones are not all
equal, so that a musician whose ear was infinitely sensitive would say: "This is not
the chromatic octave of C♯ that I hear; it is the octave of C played a semitone too
high." It follows that in every system of tuning other than equal temperament, each
scale has its own special characteristic quality; we do not pass from one scale to
another by a mere uniform change of pitch.



Some regard it as a defect of equal-temperament tuning that it obliterates the
different characteristic qualities of the various keys. How serious this defect is will,
of course, depend on how far these differences, if indeed they can be perceived at all,
contribute to the interest or enjoyment of our music.
In the original Greek modes, the octave was divided into its seven intervals by steps
which varied greatly from one mode to another, with the result that the characteristic
qualities of the various modes were unmistakable and could be recognised at once.
Plato tells us, for instance, that the Lydian mode (our modern major mode!) was
specially associated with sorrow; it and the closely associated Ionian mode, which
only differed from it in b♭ replacing b, were also the modes of softness, relaxation,
self-indulgence, and even drunkenness. The Dorian and Phrygian modes on the other
hand were—so he tells us—associated with courage, the military spirit, temperance
and endurance. Because of this association, Plato would have permitted only the
Dorian and Phrygian modes to be employed in his ideal republic, the Lydian and
Ionian modes being prohibited.
The only modes which are in general use in modern music are the Greek Lydian
(major mode) and Aeolian (minor mode), and their characteristic qualities are still
easily recognisable. There was a time when the church frowned on the major mode
as being too sensual for ecclesiastical music, but to-day we associate the major mode
primarily with strength, virility, gaiety, and even frivolity, while the minor mode
suggests sadness, seriousness and profundity; indeed, because of these associations,
such expressions as "in a minor key" are in common use as part of the English
language.

The differences between the various major keys are far more subtle than those which
differentiated the various Greek modes, or those which produce the differences
between the major and the minor keys in modern music. Instead of depending on the
difference between whole tones and semitones, they depend at most on the
difference between major whole tones and minor whole tones (p. 177). When we
compare two scales in major keys with one another, we find that, unless the tuning is
that of equal temperament, the octave is still divided into its seven intervals by
slightly different steps, and the question is whether this slight difference is
perceptible to the trained musical ear, and if so, whether it has an appreciable
influence on the emotional qualities of the music.
Many musicians, including Berlioz, Schumann and Beethoven, seem to have
believed that both questions must be answered in the affirmative. We find Beethoven
writing of B minor as a "schwarze tonart", describing Klopstock as "always
maestoso—D♭ major", changing the key of a song in an effort to make it sound
amoroso in place of barbaresco, and so forth.
The scientific Helmholtz appears to have held similar views; he wrote:



There is a decidedly different character in different keys on pianofortes and
bowed instruments. C major and the adjacent D♭ major have different aspects.
The difference is not caused by a difference of absolute pitch, as can easily be
verified by comparing two instruments which are tuned to different pitches. If
D♭ on one instrument has the same pitch as C on the other, the G major still
retains its brighter and stronger character on both, and the D♭ its soft, veiled
harmonious quality.

To-day many musicians claim to hear the different characteristics very clearly, and
associate them with the emotional quality of the music. They will tell us that music
played in the "open" key of C major—with neither flats nor sharps in the key
signature—sounds strong and virile; played in the key of G, with one sharp, it
sounds brighter and lighter; in D, with two sharps, even more so; and so on. Every
additional sharp in the key signature is supposed to add to the brightness and sparkle
of the music, while every flat contributes softness, pensiveness, and even
melancholy. Some writers go into greater detail. Here, for example, is part of an
arrangement suggested by Ernst Pauer and quoted in the English translation of
Helmholtz's Tonempfindungen:

C major—Pure, certain, decisive; expressive of innocence, powerful resolve,
manly earnestness and deep religious feeling.

D♭ major—Fullness of tone, sonority and euphony.

E major—Joy, magnificence, splendour; brightest and most powerful key.

E minor—Grief, mournfulness, restlessness.
F major—Peace, joy, light, passing regret, religious sentiment.

F minor—Harrowing, melancholy.

F♯ major—Brilliant, very clear.

G♭ major—Softness, richness.

It is clear that even if these qualities had ever been associated with the various keys,
they must all be lost in equal temperament, in which, to take the most obvious
instance, the key of F♯ major (six sharps) is absolutely identical with that of G♭
major (six flats). Yet musicians who claim to find the association in music played by
the orchestra claim also to hear it on the pianoforte, and have expended much
ingenuity in maintaining that the keys retain their alleged characters and distinctive
quality even on the pianoforte. Helmholtz, for instance, argued that the operation of
striking a short black key must necessarily differ mechanically from that of striking
the white keys with their longer leverage, and suggested that this may cause the
required difference. It cannot be denied that it might make some difference, but it
would be a most amaz ing coincidence if it made precisely the difference needed, so
that the different lengths of the black and white keys on the pianoforte gave just the
same characteristics to music played on the pianoforte as the deviations from equal
temperament give to the same music when played by an orchestra.



Such a coincidence is, indeed, so utterly improbable that it seems safe to rule it out,
and to assert that, in the case of pianoforte music at least, the special qualities of
individual keys exist only in the imagination of the hearer, and possibly sometimes
in that of the composer also, who may have chosen the key of a particular
composition so as to fit in with his preconceived ideas of its emotional
characteristics. In confirmation of this it may be remarked that pianoforte pieces
retain their emotional qualities when played on a pianola, on which the mechanical
difference between white and black keys disappears entirely.
The case of orchestral music cannot be dismissed so easily, but an obvious judgment
may reasonably be based on the circumstance that those who claim to hear
differences in the orchestra claim to hear precisely the same differences on the piano,
although the equal temperament tuning makes it impossible that they should occur;
and we may feel confirmed in our judgment by the circumstance that these
differences are not always the same with all hearers. We have already noticed how
Plato associated our modern key of C major with sorrow, weakness and self-
indulgence, while Helmholtz associates it with brightness and strength, and Pauer
with purity, innocence, manliness, and other virtues. And Helmholtz, in the passage
just quoted, describes D♭ major as soft, veiled and harmonious, while Beethoven
associated it with maestoso qualities, and Pauer's list tells us that it has fullness of
tone, sonority and euphony.
All this suggests that the whole matter is one of subjective imagination, possibly
based in the first instance on association of ideas. An obvious chain of associated
ideas starts from sharps in the key-signature, and runs through sharpening of pitch to
high notes and bright, joyous music; another runs from flats through flattening of
pitch to deep-pitched notes, with their depression and seriousness. Obviously this
does not explain everything; there may also be association with well-known pieces
of music.

The power of subjective imagination seems to be very strong. Some hearers even
claim to find emotional qualities in individual notes—here is a list from Curwen's
Standard Course of Lessons and Exercises in the Tonic Sol-fa Method (1872):

Do (key-note)—Strong, firm.
Re—rousing, hopeful.
Mi—steady, calm.
Fa—desolate, awe-inspiring.
So—grand, bright.
La—sad, weeping.
Ti—piercing, sensitive.

We cannot but be reminded of the Beethoven enthusiast who claimed that a single
chord, nay even a single semi-quaver, of his favourite master contained more
emotional quality than all the music of Bach added together.



In whatever way we answer these various questions it remains true that the
introduction of equal temperament tuning has resulted in much of the music of the
earlier masters not being heard tonally as it was intended to be heard—as for
instance the vocal and organ works of Bach and Handel, and the clavichord and
harpsichord works of Handel, all of which were written for the mean-tone system.
Our discussion will have made it clear that there is no perfect system of intonation,
and that no scale can be devised which is suited for all instruments. In an orchestra
we may hear the brass playing in harmonics, the strings in just intonation, or perhaps
a compromise between this and equal temperament, and the organ, harp and piano in
equal temperament. Yet we seldom feel that anything is wrong, except perhaps in a
pianoforte concerto, where the conflict arises in its acutest form. It was not always
so. Dr Robert Smith, writing in 1759, described equal temperament as "that
inharmonious system of 12 hemitones, which produces a harmony extremely coarse
and disagreeable", and even in 1852 Helmholtz wrote:

When I go from my justly-intoned harmonium to a grand pianoforte, every note
of the latter sounds false and disturbing.... On the organ, it is considered
inevitable that, when the mixture stops are played in full chords, a hellish row
must ensue, and organists have submitted to their fate. Now this is mainly due
to equal temperament, because every chord furnishes at once both equally-
tempered and justly-intoned fifths and thirds, and the result is a restless blurred
confusion of sounds.

While we cannot deny the general truth of this, we hardly feel so critical to-day.
Perhaps our ears are more tolerant than those of our ancestors. Just as we have
learned to tolerate and even enjoy harmonies which they found unbearable, so we
may have learned to enjoy imperfectly tuned intervals which they heard only as a
"hellish row".

The Music of the Future

Earlier in the present chapter we let our fancy roam to the extent of imagining that
we were visiting another planet, on which musical development had reached about
the same level as on our own. As the laws of arithmetic would be the same on this
planet as on earth, we conjectured that the inhabitants might quite possibly have
arrived at the same musical scale as our own, the octave being divided into twelve
equal, or approximately equal, divisions.
If we are prepared to take a further flight of fancy, let us imagine that we visit a
planet on which music has developed to a far higher level than our own, or, if we
take an optimistic view of the future of our race, let us imagine that we revisit our
own planet some thousands of years hence. What kind of music shall we find and, in
particular, what scale will be in use?



The simplest, although not necessarily the correct, conjecture is that the music of the
future will be like that of the present, but intensified—as it is now, only more so. To
see what is implied in this, we must read our histories of music and imagine that
those tendencies which have moulded music into its present form persist, and mould
it still further in the same direction.
One tendency is typified in the history of consecutive fifths. Harmonies which have
seemed venturesome and perhaps ugly to one generation seem natural and beautiful
to the next, but are destined through continued repetition to seem obvious and
tedious to generations yet to come. The sated ear for ever demands new harmonies
which it will fast learn to tolerate, and then dismiss as threadbare and uninteresting.
Thus we find a long succession of musicians, Palestrina, J. S. Bach, Beethoven,
Liszt, Wagner, Debussy—each of whom broke new ground, and most of whom were
regarded as revolutionaries in their day—and innumerable other modern composers,
introducing chords which after being thought perilously discordant at first, have now
passed into the common language of music, and are heard with pleasure by our
modern ears. Not only so, but the indisputable dissonances of equal temperament no
longer distress us in the way that they seem, from the quotations given above, to
have distressed our more fastidious predecessors.

One way of picturing the future is to imagine our posterity becoming more and more
tolerant of dissonance as time goes on. If they ever attain to a stage in which all
possible combinations of notes in the present scale are heard as tolerable but boring
concords, further progress will only be possible by music enlarging its territory—by
adding more notes to the scale. There is already a tendency to experiment with split
semitones—quarter-tones—although up to the present it can hardly be said to have
met with overwhelming success.
This brings us to a second tendency in musical history—a tendency continually to
enlarge the scale. This has been in turn pentatonic (5-note), heptatonic (7-note) and
chromatic (12-note). Has it reached its final resting place in the 12-interval division
of the octave, or will the subdivision still continue?
We have already seen that the question is one for the arithmetician. Without
forgetting the proverbial dangers of prophecy, we may be fairly sure that the laws of
arithmetic will not alter, and that the natural harmonics will not change their position
—a million years hence, as now, their frequencies will be 2,3,4, ... times that of the
fundamental. And, unless the physiological quality of our ears changes appreciably,
we may assume that we shall always obtain our basic pleasure from chords whose
frequency ratios can be expressed by the smallest of numbers. Because of this, it
seems likely that the present fifth, with the simplest frequency ratio of all, 3:2, and
the major third, with the next simplest frequency ratio 5:4, will figure largely in the
music of the future. Before we attempt a conjecture about the musical scale of the
future, it is worth seeing how far the subdivision of the octave would have to be
extended, to provide a scale richer and purer in this respect than our present scale.



More Complex Scales

We have already seen that the complexities of the present scale centre in the fact that
12 fifths are not exactly equal to 7 octaves. Let us first examine whether we can
replace the numbers 12 and 7 in this statement by others which will reduce the
degree of inexactness. Using the method of continued fractions, we find that the
following are increasingly good approximations to the ratio of the intervals of a fifth
and an octave:

  12 fifths = 7 + 0.019 octaves =   7 octaves     +   1/4 semitone
  41      "   = 24 − 0.016      "      =  24      "          −   1/5      "
  53      "   = 31 + 0.003      "      =  31      "          +  1/28     "
306      "   = 179 − 0.0014      "      = 179      "          −  1/60     "

Each of these approximations is the best that can be obtained without extending the
scale beyond the number of notes it contemplates, so that if the only problem was
that of reducing the comma of Pythagoras to a minimum, the logical stopping-places
would be at 12, 41, 53 and 306 notes to the octave. This is, however, far from being
the whole problem: we want a scale which is rich in 5:4 consonances (major thirds)
as well as in 3:2 consonances. Now in the various scales just mentioned, the number
of notes which constitute the exact 5:4 consonance are found to be 3.86, 13.20, 17.06
and 98.51 respectively. The only scale which is even as good as the present 12-note
scale in this respect is the 53-note scale. On this the present "fifths" are replaced by
intervals of 31 notes, the tuning being almost perfect, while the present "major
thirds" are replaced by intervals of 17 notes, these being flat by only a seventieth
part of a present semitone.
So far as is known, a 53-note scale was first proposed in Europe in the seventeenth-
century by Nicolas Mercator, Danish mathematician and astronomer, who, according
to Yasser, found it mentioned in the writings of a Chinese theorist, King-Fang, of the
second century B.C. In the middle of the last century, two harmoniums with 53 notes
to the octave were built, one for Mr R. H. M. Bosanquet of London, and one by Mr
J. P. White of Springfield, Mass., but neither seems to have been regarded as more
than a curiosity.
We have already seen that the present 12-note scale has its roots embedded very
deeply in the unalterable properties of numbers; we now find that music will have to
go very far before finding a better scale. But a 53-note scale would give far purer
harmonics than the present scale, and we can imagine future ages finding it worthy
of adoption, in spite of all its added complexities—especially if mechanical devices
replace human fingers in the performance of music. For, in the last resort, our
limited scales have their origin in the limitation of our hands.
Yet, if ever music becomes independent of the human hand, may not the race then
elect to use a continuous scale in which every interval can be made perfect—as with



the unaccompanied violin of to-day?



[G]

[H]

[I]

[J]

FOOTNOTES:
There is no theoretical reason for starting with F rather than with any other note of the

scale. F has been selected merely in order to keep off the black notes of the piano for as
long as possible.

Actually he was unacquainted with the concept of "frequency" and spoke in terms of
wave-lengths. I have expressed his ideas in more modern language.

Or Hypophrygian when in another pitch.

Or Hyperdorian when in another pitch.



CHAPTER VI
THE CONCERT ROOM

We have now considered the way in which musical sounds are produced by various
instruments, and the way in which the quality of those sounds depends on the
proportion of the various harmonics of which they are the blend. We have further
considered the combining of single sounds into chords, and the choice of a musical
scale which shall give as much pleasure as possible—or, perhaps, more accurately,
as little pain as possible—to the sensitive ear. But our problem does not end with the
production of musical tone; it ends only with the perception of this tone by the brain.
After a musical tone has been produced in the orchestra, it has to go through two
further stages—transmission from the instrument to the ear-drum of the listener, and
transmission from his ear-drum to his brain. We consider these two stages in this and
the following chapter.

The Transmission of Sound-Waves

Imagine that we are listening to an orchestra out in interstellar space. As we have
seen that some material medium is necessary to transmit the sound from the
instruments to our ear-drums, let us give free rein to our fancy, and imagine
interstellar space filled with ordinary air.

Sound leaves each instrument in the form of waves which spread in all directions. If
there is nothing to absorb their energy, they travel on for ever, but their intensity
naturally diminishes as they spread out. One second after an instrument has been
sounded, the waves that it has produced lie on a sphere 1100 feet in radius; after two
seconds they lie on a sphere 2200 feet in radius, and so on.
The amount of energy which crosses these spheres is the same for all, but as the
second sphere has four times as much surface as the first, only a quarter as much
energy crosses it per square inch of its surface. If, then, one listener A listens at a
distance of 1100 feet, and another B at a distance of 2200 feet, only a quarter as
much energy will fall on the ear-drum of B as falls on the ear-drum of A. This is why
the music sounds fainter to B than to A. If A gradually changes his distance from an
instrument, the energy he receives will fall off in the same way, i.e. according to the
law of the inverse square of the distance, which is the way in which gravitational
force, or electrical attraction and repulsion, or the intensity of light, fall off—it is the
natural law of diminution with distance.



Any single note of the music can be analysed into its harmonics in the way already
explained, and there is no interchange of energy between the different harmonics as
the sound travels through space. Thus the sound which falls on the ears of B is
exactly identical in quality with that which falls on the ears of A; the only difference
is in quantity.
Yet we must not assume that the music which B hears will be merely a fainter
version of that which A hears. All sounds are treated in the same way until they fall
on the ear-drum, their intensity falling off in the way just explained, whatever their
pitch may be. But we shall see in the next chapter that the ear itself is not so
impartial; it treats sounds of different pitches in different ways. For instance, when
the sounds are faint, it is far more sensitive to treble notes than to bass, so that as the
sounds of our interstellar orchestra fall off in strength, we are likely to hear treble
notes far longer than bass notes. If the orchestra is a drum and fife band, the fifes
will be heard to a far greater distance than the drums.
If we bring our orchestra down to earth, many new complications arise, of which
three at least are important enough to be mentioned.

In the first place, the sound starts out as before in all directions, but some of it strikes
the ground almost immediately. Waves of sound are subject to the same laws as other
waves, so that when they strike the ground some of their energy enters the ground
and is absorbed, while the remainder is reflected and starts off on a new path through
the air, forming a sort of echo from the ground. Thus a listener may hear the sound
of an instrument twice over, part of the sound having travelled directly through the
air while the rest has first travelled to the ground, been reflected there, and then
travelled up to the ear of the listener. This second part will arrive slightly later than
the first, because it has travelled over a longer path, but the difference in time will
usually be imperceptible, and the reflected sound will seem merely to reinforce the
direct waves. Here again notes of different pitch are treated unequally, but the
discrimination is now usually against the high notes; the sound of the drums is
reflected better than that of the fifes.
In the second place, obstacles such as trees or buildings may make "sound-
shadows", and so block out the sound from certain regions. Again notes of different
pitch are treated unequally; the short sound waves of a shrill note are completely
stopped by a fair-sized obstacle, but those of a deep note merely swing round the
obstacle, and reunite again behind it. Indeed, this is a general property of waves of
all kinds. We see it illustrated when sea-waves roll in and strike against the pillars of
a seaside pier. Long waves seem to disregard the pillars altogether, merely dividing
right and left and reuniting the moment the pillars are left behind. Short waves and
small ripples, on the other hand, find the pillars a serious obstacle to progress; they
are reflected back and spread out as new ripples in all directions. We may almost say
that obstacles filter out short waves, while the long waves pass on undisturbed. We
find the same thing occurring with light-waves. These are millions of times shorter
than sound-waves, so that quite small obstacles, such as minute particles of dust,



filter out the short waves which constitute blue light, and allow the long waves
which constitute red light to pass. For this reason the sun looks red at sunset, or
when seen through smoke or dust; the short waves which are filtered out make the
blue of the day sky or the purple of the twilight. In every case the discrimination is
against short waves, which in sound means tones of high pitch.
In the third place, a certain amount of sound will travel, not through the air, but
through solid substances such as the floor or ground. Generally speaking, deep-
pitched notes are transmitted more freely than those of higher pitch, so that once
again the discrimination is against the latter.
Thus although high notes may be found to have the greater carrying power out in
interstellar space, low notes will probably have the greater carrying power down on
earth.

When we take our orchestra into a concert hall, the same complications recur in
renewed strength. Walls, ceiling, furniture and audience are all at work absorbing
part of the sound and reflecting the rest, while the columns, galleries and projections
on the walls form shadows, and so obstruct the passage of the sound. Not only are
sounds of different pitch treated unequally, but the different harmonic constituents of
a single note are treated unequally, so that the proportions in which these are heard
may vary as we pass from one point to another in a concert room. Finally, we have to
reckon with sound being transmitted through solids as well as through the air.
All these complications provide problems for the architect, the builder and the
conductor of the orchestra, who must try to secure that they act to the advantage, and
not to the detriment, of the music. The whole subject is of great complexity, so that
the most we can hope in the present book is to put the non-expert in a position to
understand how the expert tackles his problems.

Reflection and Absorption of Sound

The most important problems, as well as the most interesting, are presented by the
reflection and absorption of sound. The table overleaf shews the proportion of sound
of various pitches which is absorbed by surfaces of various kinds.
The entries in the first line do not of course represent the results of experiments, but
of common sense—when sound reaches an open window, 100 per cent. of it
disappears; none is reflected back. The entries in the other lines record the results of
experiments made by Professor W. C. Sabine in America, and by various
experimenters at the British Building Research Station and National Physical
Laboratory.



Substance
Absorption of sound of pitch

CC C c′ c" c‴ civ cv

Open window 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Floor:
 Wood blocks, ¾ inch
  pine, laid in mastic
 Pile carpet, 2/5 inch
  thick, on concrete
 Rubber carpet, 3/16
  inch thick, on concrete

 
 

—
 

—
 

—

 
 

0.05
 

0.09
 

0.04

 
 

0.03
 

0.08
 

0.04

 
 

0.06
 

0.21
 

0.08

 
 

0.09
 

0.26
 

0.12

 
 

0.10
 

0.27
 

0.03

 
 

0.22
 

0.37
 

0.10
Walls and Ceiling
 18 inch brick wall
  unpainted
 18 inch brick wall
  painted
 Gypsum plaster or
  hollow tiles
 Tiles (West Point)s
 Lime plaster on laths
 Do, painteds
 Canvas, 6 inchess
  from walls
 Teak panelling, 3-ply,s
  1 inch from wall

 
 

0.021
 

0.011
 

0.012
0.012
0.048
0.036

 
—
 

—

 
 
0.024 
 
0.012 
 
0.013 
0.013 
0.020 
0.012 
 
0.10 
 
0.09

 
 
0.025
 
0.014
 
0.015
0.018
0.024
0.013
 
0.12
 
0.17

 
 
0.031
 
0.017
 
0.020
0.029
0.034
0.018
 
0.25
 
0.17

 
 
0.042
 
0.020
 
0.028
0.040
0.030
0.045
 
0.33
 
0.15

 
 
0.049
 
0.023
 
0.040
0.048
0.028
0.028
 
0.15
 
0.15

 
 
0.07
 
0.025
 
0.050
0.053
0.043
0.055
 
0.35
 
0.15

Furniture: 
 Hair cushion, under
  canvas and leatherette
 Hair felt (12 per cent.
  solid)
 Seated audience

 
 

0.25
 

0.09
0.35

 
 

0.42
 

0.10
0.72

 
 

0.47
 

0.20
0.89

 
 

0.72
 

0.52
0.95

 
 

0.47
 

0.71
0.99

 
 

0.27
 

0.66
1.00

 
 

0.16
 

0.44
1.00

The entries in the second line will serve to illustrate the uses of the table. We see that
a wood-block floor absorbs 3 per cent. only of sound of pitch c′ (middle C), but 22
per cent. of sound whose pitch is four octaves higher. All the sound which is not
absorbed is reflected, so that a wood-block floor reflects 97 per cent. of c′ sound, but
only 78 per cent. of cv sound. A simple calculation shews that after ten reflections
the amounts of sound will be:

at c′ 73 per cent. reflected 27 per cent. absorbed
at cv  8 " 92 "

while after twenty reflections the amounts are:



at c′  54 per cent. reflected; 46 per cent. absorbed
at cv  0.7 " 99.3 "

To provide a simple illustration, let us imagine a room covered completely with
wooden blocks—floor, walls, ceiling and furniture. Then the calculations just made
shew that, in such a room, a note of pitch c′ undergoes twenty reflections and more
before being reduced to half its original intensity, whereas a note of pitch cv is
largely extinguished after about ten reflections, and almost completely so after
twenty reflections. Thus a wood-block surface filters out the shrill components from
sound. We can hardly expect to find a concert room completely furnished with ¾
inch pine blocks, but our table shews that other substances do the same thing to an
even greater extent—carpets, felt and audiences in particular. We shall see later how
effects such as these make a room bad for music, robbing the sound of its richness
and quality.
As a second, and more realistic illustration, let us carry out similar calculations for a
room in which the walls and floor are tiled, while the ceiling is of lath and plaster.
Our table shews that these substances all behave in much the same way, average
values for their absorption being:

at C absorption = 1.2 per cent.
at c′ " = 1.8 " 
at cv " = 5.3 "

The amounts of sound after ten reflections are now:

at C  89 per cent. reflected; 11 per cent. absorbed
at c′  83 " 17 " 
at cv 58 " 42 "

and, after a hundred reflections,

at C 30 per cent. reflected 70 per cent. absorbed
at c′ 16  " 84 " 
at cv 0.4  " 99.6 "

Clearly this room is very different acoustically from the room we first considered. In
the present room the major part of the sound of all pitches still persists after ten
reflections; after a hundred reflections the shriller constituents have been filtered out,
but tones up to c′ still occur in considerable strength.

Reverberation

Even if the room has dimensions of only about ten feet, sound which has been
reflected 100 times must have travelled about 1000 feet of path, and occupied nearly



a second in the process. Thus any note below middle C will go on echoing round the
room for at least a second before becoming silent. A bass or tenor voice will resound
in all its richness, since its harmonics are only filtered out to a slight degree, but the
same is not true for a soprano, hence the peculiarly male pleasure of singing in the
bathroom.
Suppose next that the tiled and plastered room, instead of being a mere bathroom,
has dimensions of 100 feet in all directions. Again sound is extinguished only when
it meets the walls, and all except the shriller constituents can be reflected about 100
times before extinction; by this time it will have travelled about 10,000 feet, and
occupied about 9 seconds in so doing. We now have what is described as a very
"reverberant" room. Both speech and music are quite impossible in it; speech
because when any syllable is spoken the twenty or thirty preceding syllables are still
echoing round the room, and music because every note is smeared out into a
sustained note of many seconds' duration.
In designing a room for speech or music, it is clearly important to avoid too much
reverberation. This can always be done by using fairly absorbent materials for the
walls, etc., but there is then a danger that these will rob the music of its richness by
absorbing the higher harmonics more than the lower (see p. 213, below).

Stretched strings and other similar old-fashioned artifices are probably quite
worthless for the lessening of reverberation; at any rate no scientific justification for
their use has yet been found. The coupling (p. 131) between stretched strings and the
air of the room must always be far too loose for the strings to serve any purpose; if
the strings were stroked with a violin-bow they would not fill the hall with sound,
and this shews that they cannot absorb any appreciable amount of sound from the
hall.

General Theory of Acoustics

The special detailed problems we have so far discussed are only instances of a wide
general theory, due largely to Professor W. C. Sabine of Harvard, which we shall
now explain. Strictly speaking, the theory has reference only to very reverberant
rooms, but the results it gives are found to be true, to a reasonably good
approximation, for all except very non-reverberant rooms.
We have seen that the music which a listener hears in a reverberant room consists of
different parts; one part comes direct from the musical instrument, but other parts,
almost equal in intensity, reach him after one, two, three or more reflections. The
majority of the sound which enters his ear has been reflected many times, and this
being so, its amount is much the same whether he is near the front or the back of the
hall, or anywhere inside it. Indeed, we know that only the most inexperienced
beginner chooses the front seats in a concert under the impression that he will hear
the music best from there; the experienced musician is more likely to select a seat far



back, where the instruments are all at about the same distance, and so are heard in
good balance. Any inadequacy in the volume of sound is far more likely to result
from obstructions which cause sound-shadows (p. 193) than from mere distance.
Sabine's theory, at least in its simplest form, proceeds on the supposition that the
energy of sound is spread uniformly through the hall, so that every cubic foot of
space contains the same amount. This is of course accurately true only in a very
reverberant room. The energy does not stand still, but travels in all directions at a
speed of 1100 feet a second, and this results in its extinction. A stream of sound
energy is continually falling on all the walls and pieces of furniture in the room. If
these were perfectly reflecting, no energy could be absorbed, and the sound would
stay always at the same level of intensity. But, as no walls or furniture can reflect
perfectly, the sound is continually being absorbed, and finally dies away.
Let us nevertheless imagine that all the walls, floor, ceiling and furniture of a room
are perfectly reflecting, so that there is no loss of sound by absorption here, but let us
also suppose that the room has a window exactly one square foot in area, and that we
suddenly open this. Sound at once streams out through the window, never to return,
so that the total energy of sound in the hall begins to diminish and continues to
diminish until none is left.

How long will this process take? For a preliminary computation we may picture a
stream of sound energy pouring out of the window with a speed of 1100 feet a
second, so that 1100 cubic feet of the room are cleared of energy every second.
Clearly, then, if the room has a volume of x times 1100 cubic feet, the whole process
will take x seconds.
This very rough-and-ready calculation needs amendment in two respects.
In the first place, we have reasoned as though the sound inside the room was all
moving directly towards the windows; actually it is moving in all directions equally.
Half of it is moving in directions which carry it farther away from the window, so
that this half must not come into the calculation at all. And it can be shewn that the
remaining half has an average speed in the direction directly towards the window of
only one-half of 1100 feet a second, namely 550 feet a second. Thus the rate at
which sound energy escapes through the window is not 1100 cubic feet a second, but
only a quarter of this, namely 275 cubic feet a second.
In the second place, we have not allowed for the continual diminution in the energy
left in the room. In every second the loss is the average energy in 275 cubic feet, but
the average energy per cubic foot is a steadily diminishing quantity. We may still
suppose the volume of the room to be x times 1100 cubic feet, which is 4x times 275
cubic feet, so that the energy now diminishes at the rate of one part in 4x of the
whole per second. Now a man who each year spends one part in four of his
remaining capital may become poor, but never penniless. In the same way, the
energy in our room can never be reduced absolutely to zero. A simple calculation



shews that it will be reduced to a millionth part of its value in 13.8 times 4x seconds,
or 55.2x seconds.
If we now write V for 1100x, so that V is the number of cubic feet in the room, this
time is very nearly equal to 1/20 V.
The time which sound takes to fall to a millionth of its original value is called the
"period of reverberation" of the room. The choice of a factor of a millionth may
seem somewhat arbitrary, but it is intended to represent the difference in intensity
between a quite loud noise and one which we can just, but only just, hear. Roughly
speaking, the "period of reverberation" is the time a loud sharp noise, such as a shout
or hand-clap, takes to sink to inaudibility.

For our imaginary room, with perfectly reflecting walls and furniture and an open
window one square foot in area, we have seen that this time is 1/20 V. With two
open windows of this size, the sound escapes twice as fast, so that the "period of
reverberation" is reduced to 1/40 V. If there are a whole lot of such open windows, n
in number, the escape of sound is speeded up n-fold, and the "period of
reverberation" is reduced to 1/20n V. Or we can produce the same effect by opening
a single window n square feet in area. We can cut down the period of reverberation
of any room to as little as we like by opening sufficient windows—always assuming,
of course, that the windows are there to be opened.
In an actual room, every square foot of wall absorbs energy, and so forms an outlet
for the escape of energy just as an open window does. The only difference is that an
open window absorbs all the energy that falls on it, whereas an area of wall absorbs
only a fraction of the energy, namely that given in the table on p. 196. As the amount
of this fraction depends on the pitch of the sound, we must imagine the sound
analysed into its constituents of different pitches, and discuss these constituents
separately. Let us suppose, for instance, that our sound is of pitch middle C, then we
find that each square foot of unpainted brick wall absorbs a fraction 0.025, or a
fortieth, of the sound which falls upon it, so that 40 square feet of brick wall have the
same absorbing power as one square foot of open window.
Let us speak of the absorbing power of a square foot of open window as a "unit of
absorption". Then we can pass round our room, and measure the number of units of
absorption provided by the floor, ceiling, walls and furniture of the room in turn. If
the total number of units proves to be n, the total absorption of sound in the room is
equivalent to that of an open window n square feet in area, and the period of
reverberation is 1/20n V, where V is the volume of the room in cubic feet.
For sound of moderate pitch, lath and plaster, wood floors, and glass windows all
have about the same absorbing power as brick walls, namely one-fortieth, so that an
empty room has a total absorbing power equal to about a fortieth of its total surface
in square feet. If the dimensions of the room are f feet in all directions, the total
surface is 6f2, and the total absorbing power is one-fortieth of this, or 3/20 f2. As the
volume is f3 cubic feet, the formula 1/20n V shews that the period of reverberation is



1/3 f seconds—one second for every yard in the linear dimensions of the room. The
larger a room, the greater its reverberation.

Acoustical Analyses

As a first example of the use of our formula, let us study the acoustics of an
exceedingly reverberant building—the Baptistry at Pisa. Except for its windows, the
interior is almost entirely of marble, with an absorption coefficient of only about
0.01. The floor is circular with a diameter of 100 feet, and the roof is conical with an
extreme height of 179 feet. Thus the interior has a total surface of about 50,000
square feet, and a volume of about 1,000,000 cubic feet. If the interior surface were
wholly of marble, the floors, walls and ceiling would provide only about 500 units of
absorption, so that the room would have a reverberation period of 100 seconds—
sound would persist for more than a minute and a half. Under actual conditions, the
observed reverberation period is 11 or 12 seconds. In this room, a man may sing a
sequence of notes staccato, and hear them combined into a chord for many seconds
afterwards.
A more detailed calculation for a small concert hall 50 feet long, 20 feet wide and 20
feet high, entirely empty of both furniture and audience, might stand as follows:

 Substance Area
(in sq. ft.)

Units of absorption
C c′ c″ c‴ civ

Floor
 

¾ inch pine blocks in
mastic

 
1000

 
50

 
30

 
60

 
90

 
100

Walls 3-ply teak 2800 252 476 476 420 420
Ceiling Lath and plaster 1000 20 24 34 30 28
Total units of absorption (n) 322 530 570 540 548
Period of reverberation
in seconds (1000/n) 3.1 1.89 1.75 1.85 1.82

If, instead of leaving the hall empty, we cover half the floor with an audience, we
must replace the absorption of 500 square feet of pine blocks by that of an equal area
of seated audience, and the calculation stands as follows:

 Substance Area
(in sq. ft.)

Units of absorption
C c′ c″ c‴ civ

Floor
 

Seated audience (minus
3/4 inch blocks)

 
500

 
335

 
430

 
445

 
450

 
450

Rest of hall Brought forward — 322 530 570 540 548



Total units of absorption 657 960 1015 990 998
Period of reverberation in seconds 1.52 1.04 0.99 1.01 1.00

The presence of the audience has reduced the period of reverberation to about half,
as is often the case in actual practice (see p. 209, below), with the result, as we shall
shortly see, that music sounds only half as loud as in the empty hall.
To take still a third example, let us consider the same room when the floor is covered
with felt, and half the wall space is hung with tapestry or canvas. The calculation
now stands as follows:

 Substance Area
(in sq. ft.)

Units of absorption
C c′ c″ c‴ civ

Floor Hair felt 500 50 100 260 355 330
   "  Audience 500 360 445 475 495 500
Walls 3-ply teak 1400 126 238 238 210 210
   "  Canvas 1400 140 168 350 462 210
Ceiling Lath and plaster 1000 20 24 34 30 28
Total units of absorption 696 975 1357 1552 1278
Period of reverberation in seconds 1.44 1.03 0.74 0.64 0.78

We notice that the introduction of felt and canvas has reduced the period of
reverberation still further for sounds of high pitch, although leaving it approximately
unaltered for sounds of low pitch.

Conditions for Good Hearing

Before we can discuss these results in detail, we must first consider another problem
—the maintenance of a continuous sound in a room, such as might be produced from
a steadily blown organ-pipe or a steadily bowed string. When such a sound first
starts, the room may be supposed empty of sound. Gradually the sound fills the
room, but as its intensity increases, the amount of sound absorbed by the walls also
increases. Soon the sound intensity reaches a level beyond which it cannot pass,
because at this level the walls are absorbing as much sound as the instrument is
producing. If, for instance, the walls represent 1000 units of absorption, they will
absorb 275,000 cubic feet of sound energy every second, and the level in question is
reached when the sound energy is such that the instrument produces 275,000 cubic
feet of it every second.

Let us next imagine that we halve the absorption of the room, as we might do by
emptying the room of audience or by closing some windows. There are now only



500 units of absorption in place of 1000, so that when the steady state is reached our
instrument is producing only 275 × 500, or 137,500, cubic feet of sound energy
every second. Yet, as it is still the same instrument, it must produce just as much
sound as before, whence we see that a cubic foot of space in the empty room must
contain twice as much sound energy as it contained in the full room; now that the
absorption is halved, the music sounds just twice as loud. If we had reduced the
absorption to a quarter, the music would have sounded four times as loud, and so on.
It is a general law that the loudness of a given instrument varies inversely as the
number of units of absorption, and as the law is true for any and every instrument, it
must of course be true for any orchestra or band or any collection whatever of noise-
producing instruments. It is not only true as between different states of the same
room, but also as between different rooms. If we move our instrument or orchestra to
a new room, with only half as much absorption as the original room, it will sound
twice as loud.
If we stay in the same room, the loudness varies inversely as the number of units of
absorption, and as the period of reverberation also varies inversely as the number of
units of absorption, it follows that the loudness of the music is proportional to the
period of reverberation. If we pass from one room to another the loudness of the
same instrument, or collection of instruments, is proportional to the period of
reverberation divided by the volume of the room.
Thus we can always make music sound louder by lessening the number of units of
absorption in a room, but in so doing we also increase the period of reverberation,
with the result that the music sounds not only louder but also more blurred.
Conversely we can make the music sound perfectly sharp and clear—in brief,
perfectly unblurred—by reducing the reverberation period of the room, but we can
only do this by increasing the number of units of absorption, and so enfeebling the
sound.

When the loudness of sound is unimportant—as for instance in broadcasting or
recording for gramophones, where the sound can be amplified to any desired extent
by electrical means—it is customary to use very absorbent walls, thereby attaining a
short reverberation period and great clearness in the music. But music played under
these conditions does not sound well to a listener in the room, and it becomes a
question of balancing reverberation against clearness.

The Optimum Reverberation Period

Sabine, Watson, Lifshitz and others have found, from a series of careful experiments,
that there is a certain "optimum" period of reverberation, at which practically all
cultivated listeners agree that music sounds at its best. For reasons which are not
clearly understood, this period is not the same for all rooms; it depends on the size of
the room to a marked degree. To a lesser degree it depends also on the type of music,



whether speech, song, light or serious instrumental music. The following table shews
the periods of reverberation which are found to be best for the hearing of music in
rooms of different sizes, the numbers given being the average of recent
determinations by Lifshitz and Watson:

 Volume of room
(in cu. ft.)

Optimum period of
reverberation
(in seconds)

Number of units of
absorption needed to give

the optimum period
12,000
20,000
50,000

100,000
200,000
500,000

1,000,000

1.03
1.15
1.3
1.5
1.7
1.95
2.25

580
870

1,920
3,300
5,900

12,800
22,200

For comparison with the foregoing, the table which follows[K] gives the
reverberation periods of a number of actual rooms and halls of which the acoustics
are generally admitted to be really excellent:

Room Seating
capacity

Volume
(in cu. ft.)

Period of
reverberation

Optimum
period for

size, as
given in

foregoing
tableEmpty Full

Lecture Theatre of
 the Royal Institution
 (London)

640 46,000 1.2 0.7 1.3[L]

Small Hall of the
 Conservatoire (Moscow) 550 90,000 3.46 1.30 1.5

House of Commons
 (London) 570 127,000 3.3 1.5 1.5[M]

Gewandhaus (Leipzig) 1500 400,000 3.6 2.3 1.9
Column Hall of the
 House of Unions
 (Moscow)

1600 443,000 3.55 1.75 1.9

Eastman Theatre
 (Rochester, N.Y.) 3340 790,000 4.0 2.08 2.1



 The Optimum Size of Orchestra

Closely connected with this question is that of the size of orchestra best suited for a
room of given size. The inexperienced layman is likely to dismiss the problem as
obvious. Doubling the volume of our hall, he will say, doubles the amount of space
to be filled with music, and so calls for a doubling of the orchestra; hence he will
want to make the orchestra proportional to the volume of the hall, or to the cube of
its linear dimensions. The scientific musician, on the other hand, regarding units of
absorption as mouths to be fed with sound, will see that the orchestra should be
proportional to the total number of units of absorption. It ought, therefore, to be
proportional to the surface, rather than to the volume, of the room—to the square
rather than to the cube of its linear dimensions. In large halls, cathedrals and other
very reverberant buildings, the greater part of the absorption will often come from
the audience or congregation, so that it is almost permissible to say that the
instrumental power ought to be proportional to the number of people in the building.
The old organ-builder's rule of one pipe for every member of the congregation was
no doubt a mere empirical rule-of-thumb, but it is easy to-day to find scientific
justification for it.
If we wish to obtain the most pleasing results in any particular hall, we must
remember that the ear tolerates, and even demands, more reverberation in a large
hall than in a small one. The optimum period of reverberation for halls of various
sizes is given in the second column of the table at the top of p. 209; it is easy to
calculate from this how many units of absorption are needed to reduce the period of
reverberation to its optimum value. The necessary number of units of absorption are
given in the last column of the table.
Experiment shews that the average orchestral instrument can suitably be made to
feed about 200 units of absorption; if it has more to feed, it will be unable to produce
a satisfactory fortissimo, while if it has fewer to feed, the music will sound too
overpowering when the instrument is played at its loudest. Thus to obtain the best
results, an orchestra should contain one instrument for every 200 units of absorption,
and to discover the best number of instruments for a hall of given size we must
divide the numbers in the last column of the table on p. 209 by 200. The results are
shewn in column two of the following table. Column three gives the size which is
actually found best according to Heyl:

Volume (in cu. ft.)
Number in orchestra

Calculated Heyl
12,000
20,000 
50,000 

100,000 
200,000

3 
4 

10 
17 
30 

—
—
10
20
30



500,000 
800,000 

1,000,000

64 
90 
111

60 
90 
—

In all these computations it has been assumed that the orchestra is one with a proper
balance between the different classes of instruments, between the wind, string and
percussion sections, between treble and bass, and so forth.

The Ideal Concert Room

We have so far been concerned only with the quantity of sound, but its quality is
perhaps even more important. Two concert rooms may be exactly similar in size and
shape, and yet music will sound rich, brilliant and full of life in the first, but dull, flat
and dead in the second. In the first the performers play with zest and give of their
best; in the second they feel a want of sympathy in their surroundings and a want of
power in themselves. What is the cause of this difference?

In part it is a difference in the periods of reverberation of the two rooms. Since the
loudness of the note produced by any instrument is proportional to the length of the
period of reverberation, a long period naturally induces an exhilarating feeling of
effortless power, not to mention a welcome slurring over of roughnesses and
inequalities of force and tempo, while a short period produces the despair of
ineffectual struggle: the music has only had time to shew its blemishes in all their
nakedness, and is already dead. But further and important differences arise from the
way in which the reverberation period changes as we pass up the scale of pitch.
The tables on pp. 205 and 206 contain acoustical analyses of two imaginary rooms
of equal size. The former may be described as a "wood" room, the latter as a "felt
and canvas" room. If we average over all pitches, the periods of reverberation of the
two rooms are not widely different, and both are near to the optimum, 1.15 seconds,
for a room of this size. If we do not average over all pitches, we notice a great
difference in the way in which these periods vary with the pitch. In the "wood" room
all notes above middle C have approximately the same reverberation period, so that
high and low notes which are delivered with equal strength will fill the room with
sounds of equal loudness; the balance between tones of different pitch is maintained.
In the "felt and canvas" room, on the other hand, high tones have a specially low
period of reverberation, and so must sound disproportionately thin and feeble, with
the result that the music loses its richness and life. Something could perhaps be done
towards remedying this by increasing the number and strength of the treble
instruments, but the remedy is only partial. For it is not enough to take the notes of
the various instruments as units; we must go deeper than this, and think of each note
as a blend of harmonics. The "wood" room treats all harmonics above middle C
equally, so that the timbre or characteristic quality of sound, which depends on the
proportion in which the different harmonics are blended, does not suffer on



reflection of the sound. But the "felt and canvas" room throttles the higher
harmonics, and so alters the timbre of every note—usually for the worse. We have
seen that the tone of a Stradivarius differs from that of a cheap modern violin mainly
in possessing a superabundance of very high harmonics; the "felt and canvas" room
will rob the Stradivarius of these constituents of its tone, and make it sound like a
cheap violin. Again, eight harmonics at least are heard in oboe tone, the higher of
these giving to the tone its thin, plaintive, acid-sweet quality. If the tone is robbed of
these, it sounds fat and fluty. Indeed, every instrument in the orchestra becomes fat
and fluty when robbed of its harmonics, with the result that all instruments sound
more or less alike. The same is true of diapason, gamba and reed tone on the organ.
If, then, the music is to sound at its best, the interior of the concert room should be
covered with substances which do not unduly deprive sound of its higher harmonics.
Numbers of special absorbent materials and acoustic plasters and tiles are on the
market which are designed to avoid this. As the table on p. 196 shews, ordinary
wood panelling is not unsuitable for this purpose, its absorption being fairly uniform
for notes of all pitches. If anything, it is unduly kind to tones of high frequency, and
so actually enhances the brilliance of the music, a property which results in its
frequent use.
It is especially important to use suitable materials for the ceiling and upper parts of
the walls. Even in a fairly reverberant room, in which sound may be reflected tens,
or even hundreds, of times before sinking below the threshold of audibility, the
greater part of the sound we hear is still contributed by waves which have either
come direct, or have been reflected only a very few times. To see this, let us imagine
that the interior of our room is completely covered in material which absorbs one-
third of the sound falling on it, and reflects the remaining two-thirds. In such a room
sound is reflected no fewer than thirty-four times before it becomes inaudible, yet of
the sound we hear, one-third comes from direct unreflected sound, and another two-
ninths (making five-ninths in all) from sound which has been reflected only once.
Sound which has been reflected more than three times contributes less than one-fifth
of the whole. The most important contributions to the sound we hear are accordingly
made by sound which has come direct and sound which has been only once or twice
reflected. In an actual room the floor is often covered with highly absorbing
material, and in part with a highly absorbing audience, so that the sound we hear
consists largely of sound which has not yet struck the floor, and the reflecting
qualities of ceiling and walls become of preponderating importance.

To make a room reverberant, its ceiling and walls ought to be especially massive,
hard and smooth, since these, in a general way, are the properties which endow a
surface with good sound-reflecting qualities.
Although the present book is not primarily concerned with this, similar
considerations apply to the use of rooms for speaking. Our tables shew that a room
has usually fewer units of absorption, and so is usually more reverberant for bass and
tenor notes than for treble, so that less effort is needed to fill it with bass sound than



with treble. In the matter of expenditure of energy, such a room favours the male
speaker, but he must remember that he has to contend with a longer reverberation
period than a woman speaker, and so must speak more slowly. It is often said that a
room has a definite characteristic "pitch", and that a speaker can be heard with ease
as soon as he adjusts his voice to the "pitch of the room". Everyone with much
experience of public speaking must recognise that there is a certain amount of truth
in this. The "pitch" probably represents some frequency for which the absorption is a
minimum, and the reverberation period consequently a maximum. The explanation
is frequently given that the pitch corresponds to one of the free vibrations of the air
in the room, but this would seem to be untenable for innumerable reasons.
Quite apart from the materials used for its furniture and decoration, the shape of a
room must obviously have a great influence on its quality as a concert room. We
have already seen that deep tones can travel round corners and pass round big
obstacles far more freely than tones of high pitch. Again, then, the listener who is
seated round a corner or behind an obstacle is in danger of hearing the music robbed
of its higher harmonics. That room is best for music which has no obtruding corners
or massive obstacles.
Various other practical points need careful consideration by the architect. For
instance, a curved ceiling may focus sound reflected from it, so that it is heard in
undue intensity at one point or along one line. To avoid this, care has to be taken that
any such points or lines that there may be are either well above or well below
regions which are likely to be occupied by the ears of listeners. A dome in the
ceiling may be nearly as absorbent as an open window of equal area, since sound
which once gets into it may only emerge again after a great number of reflections,
which have so diminished its strength as to make it almost inaudible. And if it is still
audible, it may have wasted so much time in the dome as to constitute merely a
distracting echo, entirely detached from the main volume of sound. The same is true
to a large extent of deep recesses and alcoves, and of narrow spaces in general.

The tendency of sound to find paths other than those through the air also needs
careful consideration, but is not necessarily disadvantageous. In the Leipzig
Gewandhaus the orchestra is placed on a raised platform which is deliberately
connected by strong wooden beams to the panelling of the hall. In this way, the walls
of the building are made to act as a huge sound-board, with excellent results.
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FOOTNOTES:
This is compiled from material given in The Acoustics of Buildings by Davis and Kaye

(Bell, 1932).

This room is excellent for speech, but untried for music. Watson finds that the
optimum reverberation period for speech is only about 80 per cent. of that for music.

This room is excellent for speech, but untried for music. Watson finds that the
optimum reverberation period for speech is only about 80 per cent. of that for music.



CHAPTER VII
HEARING

We have now considered the generation of sound and its transmission through the air
to the ear; we must finally consider its reception by the ear, and transmission to the
brain.
When the air is being traversed by sound-waves, we have seen that the pressure at
every point changes rhythmically, being now above and now below the average
steady pressure of the atmosphere—just as, when ripples pass over the surface of a
pond, the height of water in the pond changes rhythmically at every point, being now
above and now below the average steady height when the water is at rest. The same
is of course true of the small layer of air which lies in contact with the ear-drum, and
it is changes of pressure in this layer which cause the sensation of hearing. The
greater the changes of pressure, the more intense the sound, for we have seen that the
energy of a sound-wave is proportional to the square of the range through which the
pressure varies.
The pressure changes with which we are most familiar are those shewn on our
barometers—half an inch of mercury, for instance. The pressure changes which enter
into the propagation of sound are far smaller; indeed they are so much smaller that a
new unit is needed for measuring them—the "bar". For exact scientific purposes, this
is defined as a pressure of a dyne per square centimetre, but for our present purpose
it is enough to know that a bar is very approximately a millionth part of the whole
pressure of the atmosphere. When we change the height of our ears above the earth's
surface by about a third of an inch, the pressure on our ear-drums changes by a bar;
when we hear a fairly loud musical sound, the pressure on our ear-drums again
changes about a bar.

The Threshold of Hearing

Suppose that we gradually walk away from a spot where a musical note is being
continuously sounded. The amount of energy received by our ears gradually
diminishes, and we might perhaps expect that the intensity of the sound heard by our
brains would diminish in the same proportion. We shall, however, find that this is not
so; the sound diminishes for a time, and then quite suddenly becomes inaudible. This
shews that the loudness of the sound we hear is not proportional to the energy which
falls on our ears; if the energy is below a certain amount we hear nothing at all. The



smallest intensity of sound which we can hear is said to be at "the threshold of
hearing".
We obtain direct evidence that such a threshold exists if we strike a tuning-fork and
let its vibrations gradually die away. A point is soon reached at which we hear
nothing. Yet the fork is still vibrating, and emitting sound, as can be proved by
pressing its handle against any large hard surface, such as a table-top. This, acting as
a sound-board, amplifies the sound so much that we can hear it again. Without this
amplification the sound lay below the threshold of hearing; the amplification has
raised it above the threshold.
In possessing a threshold of this kind, hearing is exactly in line with all the other
senses; with each our brains are conscious of nothing at all until the stimulus reaches
a certain "threshold" degree of intensity. The threshold of seeing, for instance, is of
special importance in astronomy; our eyes see stars down to a certain limit of
faintness, roughly about 6.5 magnitudes, and beyond this see nothing at all. Just as a
sound-board may raise the sound of a tuning-fork above the threshold of hearing, so
a telescope raises the light of a faint star above the threshold of seeing.

We naturally enquire what is the smallest amount of energy that must fall on our ears
in order to make an impression on our brains? In other words, how much energy do
our ears receive at their threshold of hearing?
The answer depends enormously on the pitch of the sound we are trying to hear.
Somewhere in the top octave of the pianoforte there is a pitch at which the
sensitivity of the ear is a maximum, and here a very small amount of sound energy
can make itself heard, but when we pass to tones of either higher or lower pitch, the
ear is less sensitive, so that more energy is needed to produce the same impression of
hearing. Beyond these tones we come to others of very high and very low pitch,
which we cannot hear at all unless a large amount of energy falls on our ears, and
finally, still beyond these, tones which no amount of energy can make us hear,
because they lie beyond the limits of hearing.
The following table contains results which have recently been obtained by Fletcher
and Munson.[N] The first two columns give the pitch and frequency of the tone under
discussion, the next column gives the pressure variation at which the tone first
becomes audible, while the last column gives the amount of energy needed at this
pitch in terms of that needed at fiv, at which the energy required is least:



Tone Frequency

Pressure
variation at
which note

is first
heard

Energy required in
terms of minimum

CCCC (32-ft. pipe of
 organ; close to lower
 limit of hearing)

16 100 bars 1,500,000,000,000

AAA (bottom note of
 piano) 27 1 bar 150,000,000

CCC (lowest C on
 piano) 32 2/5 " 25,000,000

CC 64 1/40 " 100,000
C 128 1/200 " 3,800
c' (middle C) 256 1/1000 " 150
c" 512 1/2500 " 25
c‴ 1,024 1/5000 " 6
civ 2,048 1/10000 " 1.5
fiv (maximum sensitivity) 2,734 1/12500 " 1.0
cv (top of piano) 4,096 1/10000 " 1.5
cvi 8,192 1/2000 " 38
cvii 16,384 1/100 " 15,000
Close to upper limit of
hearing 20,000 500 bars 38,000,000,000,000

We see that the ear can respond to a very small variation of pressure when the tone is
of suitable pitch. Throughout the top octave of the piano, less than a ten-thousand-
millionth part of an atmosphere suffices; as already mentioned, this is produced by
an air-displacement of less than a ten-thousand-millionth part of an inch, which
again is only about a hundredth part of the diameter of a molecule.
We also notice the immense range of figures in the last column. Our ears are acutely
sensitive to sound within the top two octaves of the piano, and quite deaf, at least by
comparison, to tones which are far below or above this range; to make a pure tone of
pitch CCCC audible needs a million million times more energy than is needed for
one seven octaves higher.
The structure of an ordinary organ provides visual confirmation of this. The pipe of
pitch CCCC is a huge 32-foot monster, with a foot opening which absorbs an
enormous amount of wind, and yet it hardly sounds louder than a tiny metal pipe
perhaps three inches long taken from the treble. A child can blow the latter pipe



quite easily from its mouth, but the whole force of a man's lungs will not make the
32-foot pipe sound audibly.

Two Psychological Laws

So much for the smallest amount of sound that can affect our ears; let us next
examine what is the smallest difference of sound that can affect them—in other
words, by how much must a sound be increased before our ears inform us that it has
become appreciably louder?
To answer this question, let us experiment with two electrically driven tuning-forks
or loudspeakers, each provided with an indicator to tell us how much energy is being
given out in its vibrations.
At first we supply equal amounts of energy to the two forks, and so hear sounds of
equal loudness when they are sounded alternately. If we now continue sounding the
forks alternately, but gradually increase the supply of energy to one of them, we shall
notice no difference in the loudness at first; it takes some time to reach a point at
which this fork sounds appreciably louder than the other. Generally speaking, we
shall first notice a difference when the louder sound emits about 25 per cent. more
energy than the fainter. We find in this way that our ears are insensitive to anything
less than a 25 per cent. difference of energy. The pianist who is executing a rapid
passage may allow himself a 25 per cent. variation in the strengths of different notes,
without our ears detecting any falling off from regularity. The organ-voicer may
leave a row of pipes differing by as much as 25 per cent. in strength, and even a
trained ear will pass them as perfectly uniform.
If we now increase the energy supplied to both the forks—to 100 or 1000 times the
original amount if we please—and repeat the experiment, we shall again find that a
25 per cent. difference is necessary before our ears are conscious of any difference at
all. To produce a perceptible increase of loudness, we do not add a certain definite
amount to the energy, but increase it in a certain definite proportion; it is not a matter
of addition but of multiplication. We can in fact divide up the whole range of sound
intensity into distinct steps, such that each is just, and only just, perceptibly louder to
our ears than the preceding, and shall find that each step represents about 25 per
cent. more energy than the preceding.
This illustrates a general law first enunciated by Weber: "The minimum increase of
stimulus which will produce a perceptible increase of sensation is proportional to the
pre-existent stimulus." The law is only approximate at best; it cannot even be tested
very accurately, since it makes a statement about subjective sensations, which
necessarily vary from one person to another. Even in the simple case we have just
discussed, the law is known to be far from accurate. For instance, our ears are
abnormally insensitive to changes of intensity in very faint sounds. When a sound
has only ten times the energy it has at the threshold of hearing, twice as large a



proportionate change is needed to affect our ears, as when it is reasonably loud; it is
no longer a matter of 25 per cent. increase, but of 50 per cent. For still fainter
sounds, and also for tones of very high or very low pitch, even larger changes are
needed.
Recent experiments by Churcher, King and Davies seem to suggest that there is no
range at all in which the law is entirely accurate. Moreover, while a difference of
about 25 per cent. is usually needed to affect our ears, a difference of only 10 per
cent. may be appreciable under the ideal conditions of an acoustical laboratory.
Nevertheless, in spite of all reservations, it remains true that under normal
conditions, and throughout a very large range of intensity and of pitch, the smallest
increase in intensity to which our ears are sensitive is one of about 25 per cent.

To make ten such increases, we must increase the energy of the sound to (1.25)10

times its original intensity. The value of this number is 9765625/1048570, and if we
take this as equal to ten for the moment, we may say that a tenfold increase of energy
—as for instance from one unit to ten units—carries us up ten steps in the scale of
loudness. To get a further equal increase of loudness, we must go up another ten
steps, and this requires a further tenfold increase of energy—namely from 10 to 100
units—and so on, indefinitely.

This provides an example of a very general psychological law, known as Fechner's
law. It is virtually an inference from Weber's law, and states that the intensity of our
sensation does not increase as rapidly as the energy of the exciting cause, but only as
rapidly as the logarithm of this energy. As with the smallest perceptible change,
larger changes in sensation must be reckoned in terms of multiplications, and not in
terms of additions, of the exciting cause.

The Scale of Sound Intensity

The change in the intensity of a sound which results from a tenfold increase in the
energy causing this sound is called a "bel". The word has nothing to do with beauty
or charm, but is merely three-quarters of the surname of Graham Bell, the inventor
of the telephone.
We have already thought of this tenfold increase as produced by ten equal steps of
approximately 25 per cent. each. More exactly, each of these must represent an
increase by a factor of 10(1/10), of which the value is 1.2589. Each of these steps of a
tenth of a bel is known as a "decibel"; as we have seen, it represents just about the
smallest change in sound intensity which our ears notice under ordinary conditions.
The intensity at the threshold of hearing is usually taken as zero point, so that, if we
take the smallest amount of energy we can hear as unit:

1       unit of energy gives a sound intensity of   0  decibels
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The Scale of Loudness

The scale of sound intensity had its zero fixed at the threshold of hearing, but as the
position of this depends enormously on the pitch of the sound under discussion, this
scale is only useful in comparing the relative loudnesses of two sounds of the same
pitch. It is of no use for the comparison of two sounds of different pitches. For this
latter purpose we must introduce a new scale, the scale of loudness.
The zero point of this scale is taken to be the loudness, as heard by the average
normal hearer, of a sound-wave in air, which has a frequency of 1000 and a pressure
range of 1/5000 bar—or, more precisely, 0.0002 dyne—at the ear of the listener.
This, as we have already seen, is just about the threshold of hearing for a sound of
this particular frequency.
The unit on this scale is called a "phon". So long as we limit ourselves to sounds of
frequency 1000, the phon is taken to be the same thing as the decibel, both as
regards its amount and its zero point. Thus if a sound of frequency 1000 has an
intensity of x decibels on the scale of sound intensity, it has a loudness of x phons on
the new scale of loudness. But the phon and decibel diverge when the frequency of
the sound is different from 1000. Two sounds of different pitch are said to have the
same number of phons of loudness when they sound equally loud to the ear. Thus we
say that a sound has a loudness of x phons when it sounds as loud to the ear as a
sound of frequency 1000 and an intensity of x decibels. Such a sound lies at x
decibels above the threshold of hearing for a sound of frequency 1000, not above
that for a sound of its own pitch.[O]

The Threshold of Pain

We have already considered what is the smallest amount of sound we can hear; we
consider next what is the largest amount. This is not a meaningless problem. For, if
we continually supply more and more energy to a source of sound—as for instance
by beating a gong harder and harder—the sound will get louder and louder and, in
time, we shall find it becoming too loud for pleasure. At first it is merely



disagreeable, but from being disagreeable it soon passes to being uncomfortable.
Finally the vibrations set up in our ear-drums and inner ear may become so violent
as to give us acute pain, and possibly injure our ears.
If we note the number of bels our ears can endure without discomfort, we shall find
that this again, like the position of the threshold of hearing, depends on the pitch of
the sound. At the bass end of the pianoforte it is about six bels; it has risen to eleven
bels by middle C; it rises further to twelve bels in the top octave of the pianoforte,
after which it probably falls rapidly.
The intensity of sound at the threshold of hearing, and also the range above the
threshold which we can endure without undue discomfort, both vary greatly with the
pitch of the sound, but their sum, which fixes a sort of threshold of pain, varies much
less. Throughout the greater part of the range used in music, the intensity at this
threshold is given by a pressure variation of about 600 bars, except that it falls to
about 200 bars in the region of maximum sensitivity.

Fig. 58. The limits of the area of hearing, as determined by Fletcher and Munson. Each point in this
diagram represents a sound of a certain specified frequency (as shewn on the scale at the bottom) and
of a certain specified intensity (as shewn by the scale on the left). If the point lies within the shaded
area, the sound can be heard with comfort. If the point lies above the shaded area, the hearing of the
sound is painful. If the point lies below the shaded area, the sound lies below the threshold of hearing,
and so cannot be heard at all.

We can represent this in a diagram as in fig. 58, and the shaded area which is the
area of hearing can be divided up further by curves of equivalent loudness as shewn
in fig. 59. Both the limits of the area of hearing and the curves of equal loudness
have been determined by Fletcher and Munson.



Fig. 59. The loudness of sounds which lie within the area of hearing, as determined by Fletcher and
Munson. As in fig. 58, each point of the diagram represents a sound of specified frequency (as shewn
on the scale at the bottom) and of specified intensity in decibels (as shewn on the scale on the left),
the zero point being the faintest sound of frequency 1000 which can be heard at all. The loudness of
the sound in phons is the number written on the curved line which passes through the point; thus these
curves are curves of equal loudness.

We see at a glance how the ear is both most sensitive to faint sound, and also least
tolerant to excessive sound, in the range of the upper half of the piano. To be heard
at a moderate comfortable loudness of say 50 or 60 phons, treble music needs but
little energy, while bass music needs a great deal. This is confirmed by exact
measurements of the energy employed in playing various instruments. The following
table gives the results of experiments recently made at the Bell Telephone
Laboratories:



Origin of sound Energy
Watts

Orchestra of seventy-five performers, at loudest 70
Bass drum at loudest 25
Pipe organ at loudest 13
Trombone at loudest 6
Piano at loudest 0.4
Trumpet at loudest 0.3
Orchestra of seventy-five performers, at average 0.09
Piccolo at loudest 0.08
Clarinet at loudest 0.05

Human voice
Alto singing pp 0.001
Bass singing ff 0.03
Average speaking voice 0.000024

Violin at softest used in a concert 0.0000038

We may notice in passing how very small is the energy of even a loud sound. A fair-
sized pipe organ may need a 10,000-watt motor to blow it; of this energy only 13
watts reappears as sound, while the other 9987 watts is wasted in friction and heat. A
strong man soon tires of playing a piano at its loudest, his energy output being
perhaps 200 watts; of this only 0.4 watts goes into sound. A thousand basses singing
fortissimo only give out enough energy to keep one 30-watt lamp alight; if they
turned dynamos with equal vigour, 6000 such lamps could be kept alight.
The first and last entries in the table above represent the extreme range of sounds
heard in a concert room, and we notice that the former is more than eighteen million
times the latter. Yet this range, large though it is, is only one of 7¼ bels, and so is not
much more than half of the range of 12 bels which the ear can tolerate in treble
sounds.
For a person well away from the instruments, we may perhaps estimate the violin at
its softest as being about 1 bel above the threshold of hearing for the note it is
playing, so that the full orchestra is about 8.3 bels, or 83 decibels. This may be
compared with the intensities of various other sounds, as shewn in the following
table:



Threshold of hearing 0 decibels
Gentle rustle of leaves 10 "
Quiet London garden 20 "
Whisper at 4 feet 20 "
Quiet suburban street, London 30 "
Quietest time at night, Central New York 40 "
Conversation at 12 feet 50 "
Busy traffic, London 60 "
Busy traffic, New York 68 "
Very heavy traffic, New York 82 "
Lion roaring at 18 feet 88 "
Subway station with express passing, New York 95 "
Boiler factory 98 "
Steel plate hammered by four men, 2 feet away 112 "

Owing to the different thresholds of hearing, the sounds in the above tables are not
strictly comparable, unless they happen to be of the same pitch. The following table
shews the differences of subjective loudness for a few common sounds:

Threshold of hearing 0 phons
Ticking of watch at 3 feet 20 "
Sounds in a quiet residential street 40 "
Quiet conversation 60 "
Sounds in a busy main street 75 "
Sounds in a tube train 90 "
Sounds in a busy machine shop 100 "
Proximity of aeroplane engine 120 "

Experiments shew that a faint sound will not be heard at all through a louder sound
of the same pitch, if the difference in intensity is more than about 1.2 bels, but the
difference in loudness may be greater if the sounds are of very different pitch.
Conversation at 12 feet should just be heard against busy traffic in London, because
the difference in intensity only amounts to 1.0 bel; it will not, however, be heard
against busy traffic in New York, because the difference here is 1.8 bels. In the same
way a roaring lion would only just be heard in a boiler factory, although he might
hope to attract considerable attention in a New York subway station.

Tones created by the Ear



We now pass from a discussion of the quantity of sound to a discussion of its quality.
Musical sound is like light in consisting of waves of definite frequencies, and our
ears are like our eyes in being sensitive only to waves whose frequencies fall within
a comparatively small range. The ear is, however, endowed with a property which
the eye does not possess, namely that of creating waves of entirely new frequencies
out of the disturbances which fall on it. Because of this, the brain may hear tones of
pitches which were entirely lacking in music as originally played.
The reason for this is comparatively easy to understand. If the ear-drum were an
absolutely simple membrane like a drum-skin or a telephone diaphragm, it would
vibrate in exact sympathy with any vibrations which fell upon it, at any rate so long
as these were not violent enough to press it appreciably out of shape, and the
vibrations which it passed on to the brain would be of precisely the same frequencies
as those it received from the air. But this is only true provided that the forces tending
to restore the ear-drum to its normal position, when it is forced a thousandth of an
inch to the right, are just the same in amount as they are when it is forced an equal
distance to the left; in other words, the ear-drum and its attachments must be
supposed to form a structure with right and left symmetry. A very slight knowledge
of the mechanism of the ear tells us that this is not the case; the ear-drum does not
possess symmetry of this kind. On one side of it there is nothing but air; on the other
side there is a complicated mechanism of bone which transmits the motion of the
ear-drum to the brain. When the ear-drum moves in an outward direction, there is
nothing but its own elasticity to check its motion and pull it back; when it moves
inwards, its motion is further impeded by this bony structure.
Helmholtz was the first to point out that the bony structure would act in this way.
Quite recently other investigators, von Békésy, and Chapin and Firestone, have
found reasons for thinking that other parts of the ear—the liquid which fills the
cochlea and the basilar membrane (p. 246)—produce similar results.

To trace out some of the consequences of this, let us first suppose that a simple
harmonic vibration, such as the pure tone of a tuning-fork, is transmitted through the
air. Simple harmonic pressure-waves now fall on the ear-drum, and if this possessed
perfect fore-and-aft symmetry, its response would be a simple harmonic vibration,
such as that shewn by the thick line in fig. 60. Actually the presence of the bony
mechanism impedes the motion of the ear-drum in one direction—say that which is
represented below the horizontal line in fig. 60—with the result that here the
response of the ear-drum will be restricted, and its displacement will be more like
that shewn by the dotted line.
To discover what tones are conveyed to the brain, we must analyse the amended
displacement curve into its constituent simple harmonic curves. The new curve is
represented by the thick curve above the line and by the dotted line below. If the
original sound vibration had a frequency of 200 a second, this curve must clearly
repeat itself 200 times a second, and Fourier's theorem (p. 79) tells us that its
constituent simple harmonic curves will be of frequencies 200, 400, 600, 800, etc. In



other words the want of symmetry of the ear-drum has added new frequencies 400,
600, 800, etc. to the original frequency of 200. In terms of music, the ear-drum not
only transmits the tone which originally fell on it, but adds the octave and all the
other natural harmonics.

Fig. 60. The response of the ear-drum to a simple sound. The unsymmetrical nature of the human ear results in
parts of the simple harmonic curve, which is drawn thick, being replaced by those shewn by broken lines.

Let us next suppose that vibrations of frequencies 200 and 300 fall simultaneously
on the ear-drum. If the ear were a symmetrical structure, its response to the two
vibrations separately would be two simple harmonic curves of frequencies 200 and
300 performed simultaneously—as represented by the thin lines in fig. 61. The total
response would be represented by the superposition of these two curves, which is
shewn by the thick line. But the want of symmetry in the ear-drum again results in
the replacement of part of this curve by another such as is shewn by the dotted line.
And if we wish to know what tones the ear-drum passes on to the brain, we must
again resolve this amended curve into its constituent simple harmonic curves. Since
the curve repeats itself with a frequency of 100, the constituent curves will have
frequencies of 100, 200, 300, 400, 500, 600, etc. The frequencies 200 and 300
represent the original tones, while the frequencies 400 and 600 represent their
octaves, which we have already seen must be present. The remaining frequencies
100 and 500 represent entirely new tones. The former is described as a "difference
tone" because its frequency, 100, is the difference of two original frequencies; the
latter is described as a "summation tone", its frequency, 500, being the sum of the
original frequencies.

Fig. 61. The response of the ear-drum to two simple tones sounded simultaneously. As in fig. 60, a part of the
thick curve is replaced by that shewn by the broken line.

If the two original tones had been of frequencies 200 and 201, the problem could
have been treated in the same way. The displacement curve would now only repeat
itself once a second, so that when it was analysed by Fourier's theorem, the
constituent curves would be found to have frequencies 1, 2, 3, 4, etc. There is no
means of telling, from general principles alone, which of this vast array of
frequencies represent audible sounds, and which are unimportant. The question can
only be settled by a detailed, and somewhat complicated, mathematical
investigation.



 Such an investigation was first made by Helmholtz. He supposed the ear to be
unsymmetrical in the way we have already explained. On this basis he shewed, in
the first place, that a single pure tone, conveyed to the ear-drum by simple harmonic
vibrations of the surrounding air, will not produce merely a simple harmonic
vibration of the same frequency in the ear-drum. In addition to this, superposed on to
it by the asymmetry of the ear, there will be a second simple harmonic vibration of
just double the frequency. In other words the ear of its own accord, and by means of
its asymmetry, brightens up the pure tone by adding something of its octave.
He further shewed that when two pure tones are sounded simultaneously, the ear of
its own accord not only adds their two octaves, but also summation and difference
tones having the frequencies already explained.
Finally, when a whole lot of pure tones of frequencies p, q, r, etc. are sounded
simultaneously the ear not only adds their octaves, of frequencies 2p, 2q, 2r, but also
all their summation tones, of frequencies p + q, q + r, p + r, and all their difference
tones of frequencies p - q, q - r, p - r.

Helmholtz supposed that the asymmetry of the ear had only a slight influence in
modifying the tones, so that the octaves and difference tones were very faint. This is
true when the fundamental tones are themselves quite faint, but not when they are
loud. If tones of frequencies p, q and r are sounded loudly and simultaneously, it can
be shewn that we shall hear tones of the frequencies shewn in the table overleaf.

Loudest of all
p

the fundamental ones.q
r

Next loudest

2p
the second harmonics of the foregoing.2q

2r
p + q

the first summation tonesq + r
p + r
p − q

the first difference tones.q − r
p − r

Next loudest 3p
the third harmonics.3q

3r
p + q + r the second summation tones.



2p + q
2q + p
2q + r
2r + q
2r + p

2p + r

2p − q
the second difference tones.

p − r − q, etc.

To take a concrete instance, let us suppose that the three original frequencies p, q, r
are those of the notes c′, e′, g′, the fourth, fifth and sixth harmonics of CC. Then the
full table will stand as follows:



The fundamental tones
The first difference tones
The second harmonics
The first summation tones
The second difference tones
The third harmonics
The second summation tones

Harmonics 4, 5, 6 of CC.
CC (twice) and harmonic 2 of CC.
Harmonics 8, 10, 12 of CC.
Harmonics 9, 10, 11 of CC.
Harmonics 2, 3, 4, 5, 6, 7, 8 of
CC.
Harmonics 12, 15, 18 of CC.
Harmonics 13, 14, 15, 16, 17 of
CC.

 Thus when the fourth, fifth and sixth harmonics are sounded without the
fundamental tone, the ear adds the fundamental and all harmonics up to the
eighteenth.
It is in general true that when any two or more pure tones which are sounded
simultaneously happen to be harmonics of the same fundamental note, then the ear
adds this fundamental note and many of its harmonics, of its own accord—a result of
tremendous importance in all branches of pure and applied acoustics. If the pure
tones are all the odd-numbered harmonics of a fundamental note, then the ear of its
own accord adds all the even harmonics. If the two pure tones differ only slightly in
frequency, then their "difference tone" has the same frequency as the beats we have
already discussed (p. 46), so that as the two original tones approximate to one
another, their difference tone degenerates into beats, while their summation tone
approaches to their second harmonic.

Difference and Summation Tones

Difference tones were discovered by a German organist Sorge in 1745 and again
independently by the famous violinist Tartini in 1754. They can be heard quite easily
on loudly sounding almost any two notes which are a fifth apart; the tone an octave
below the lower note is then heard. For instance we may play c′ and g′ forcibly on
the piano, and shall hear C. They may also be heard when voices, and particularly
treble voices, are singing in harmony, the difference tone providing a dim bass
accompaniment (see fig. 62, below). For instance, if sopranos sing c″, e″, we hear
the difference tone C as a bass. If c″, e″ are sung in just intonation, the C is in perfect
tune with them, but if c″, e″ are sung in equal temperament, the difference tone lies
nearer to C♯ than to C, providing what Helmholtz describes as "a horrible bass,
which is all the more annoying for coming tolerably near to the correct bass". Indeed
Helmholtz considered that these dissonant combination tones formed "the most
annoying part of equally tempered harmonies".
Summation tones were discovered by Helmholtz in 1856. They are much more
difficult to hear than difference tones—largely because they lie in a region of
frequencies which is already occupied by the harmonics of the original sounds.



There has never been any doubt as to these various tones being heard, but there has
been a good deal of discussion as to whether they are purely subjective or not. If
they were heard only as a consequence of the asymmetry of the ear-drum, then they
would of course only exist inside the ear, and could not be picked up by any
resonator outside the ear. After it had been believed for some time that the notes
were purely subjective in this sense, Helmholtz was able to prove that they existed
objectively, and although his experiments have repeatedly been challenged, no one
any longer doubts that under certain conditions, the tones have an objective
existence and can be picked up with a resonator. Indeed we can easily prove this for
ourselves by striking c′ and g′ with sufficient force on the piano. We not only hear C,
but shall also find that the C strings are feebly vibrating, as can be verified by laying
small chips of wood across them, in the way explained on p. 58.
The condition that these tones shall have an objective existence is very simple. All
sound is represented by a curve, and this curve undergoes a certain amount of
distortion each time the sound passes from one conveyor to another. If any one of the
conveyors is unsymmetrical in the same way as the ear-drum, then this asymmetry
must have the same kind of effect on the sound-curve as asymmetry of the ear-drum
has, and must necessarily produce sum and difference tones in precisely the way
already explained. We may properly think of these tones as impurities which
necessarily become mixed with the pure tones whenever the sound-curve is
transmitted by any unsymmetrical structure whatever. And a little thought will shew
that the majority of transmitting structures are unsymmetrical, in a greater or less
degree.

Fig. 62. The difference tone is usually concordant, but the summation tone discordant, with the tones which
produce it.



Theory and experience agree in shewing that when the primary tones are sounded
faintly, both the difference and the summation tones are heard very faintly indeed,
the summation tones especially so. This is fortunate for our enjoyment of music,
since tones which are perfectly consonant in themselves may quite well produce
dissonant summation tones. This is shewn in fig. 62. On the other hand, as the last
line shews, the difference tones, which happily sound louder than the summation
tones, are usually concordant.
While quite properly thinking of summation and difference tones as impurities, we
must not forget that impurities may be either harmful or beneficent. On the whole,
summation tones must be placed in the category of harmful impurities, but
difference tones can be turned to advantage in a variety of ways.

Practical Uses of Difference Tones

One of the most striking instances of this is provided by the ordinary telephone. A
telephone diaphragm, like every other structure, has its own free vibrations, and the
frequencies of these happen to lie mostly within the range of frequencies covered by
the human voice. There is, then, a danger that the diaphragm may over-emphasise,
through resonance, those particular notes of the human voice which happen to
coincide with its own free periods, while leaving the others inaudible. A poor
telephone often does this, transforming the voice into a succession of metallic claps
of sound. A good modern telephone is so designed that the free vibrations of its
diaphragm are spread as uniformly as possible over a range of frequencies from
about 300 to 2400, so that sounds within this range are transmitted in considerable
strength, while those above and below it are hardly transmitted at all. Now the main
frequencies of both male and female voices lie below this range, so that the
telephone transmits very little of the main tones of a conversation. It transmits
chiefly harmonics, and out of these the ear-drum of the listener reconstructs the main
tones as difference tones, which are then transmitted to our brains in considerable
strength. The Bell Telephone Company of America has constructed two sets of
gramophone records which shew this very clearly. On the one set we hear a singing
voice, a speaking voice, organ tone and so forth, all faithfully reproduced. On the
other we hear the same voices and instruments with the fundamental tones
deliberately cut out. Yet the second set of records sounds almost exactly like the
first, the speech and music being perfectly intelligible although all fundamental
tones are missing, except in the form of difference tones created by the ear of the
listener.
We find much the same thing happening in the loudspeakers of our radio sets. Many
are designed deliberately to cut out all frequencies below about 250, the frequency
of about middle C, and so transmit no bass or tenor tones at all. Yet we hear the
double bass strings, the basses of the brass, and male voices with absolute clearness.
The explanation is, of course, that all these sources of sound are rich in harmonics.



Out of these our ears create the missing fundamental tones and lower harmonics as
difference tones, and the combination of these with the higher harmonics, which
come through unhindered, restores for us the tone played by the orchestra.
Obviously this can only happen if harmonics are transmitted in abundance. A deep-
pitched tuning-fork would not be heard at all, because it has no harmonics. The drum
does not come through in its proper pitch, because the frequencies of its free
vibrations do not form a series of natural harmonics (i.e. tones with frequencies in
the ratio 1:2:3:4:5: ...). The same is true of cymbals, of many bells and of percussion
instruments in general, and incidentally of the applause at the end of a concert item
—this is mere noise without harmonic overtones, so that all its deeper constituents
are missing.
Difference tones are also turned to advantage in a type of whistle which is used by
football referees and the police. When this is blown, a blast of air is distributed
equally over the mouths of two pipes of slightly unequal length. These of course
sound two notes of slightly different frequencies, and we hear both these and their
difference tone, which we can make as deep as we please by making the pipes nearly
equal to one another in length. For instance, pipes of lengths 2 and 2-1/8 inches give
a difference tone whose pitch is that of a 3-foot pipe. The pipes may even be so short
that their individual tones are above the range of audition. Then neither pipe can be
heard when sounded separately, but when the two pipes are sounded together, the
difference tone is heard quite clearly.
There is no limit to the depth of tone that can be obtained in this way, except that
fixed by the limitations of the human ear; as we make the pipes more nearly equal in
length, the tone finally becomes so deep that the ear is insensitive to it. If we still go
on making the two tones more nearly equal, the difference tone reappears in the form
of beats (p. 237).

The organ-builder utilises this principle to get tones of low pitch without incurring
the expense of pipes of great length. For example, the longest pipe in a big organ,
CCCC, is about 32 feet long, and its fundamental tone has a frequency of 16, while
its harmonics have frequencies of 32, 48, 64, and so on. The fundamental note is
inaudible to most people, except perhaps for a small vibration transmitted through
floors and walls, which is felt rather than heard. What our ears hear consists mainly
of harmonics of frequencies 32, 48, and so on, sounding the notes CCC, GG, etc.
Thus this immense and expensive pipe is serving no purpose beyond producing
tones of 16 and 10⅔ of pitch as harmonics for our ears to recombine into difference
tones, and these might equally well be produced by smaller and cheaper pipes. For
this reason the largest pipes in an organ are often replaced by pairs of shorter pipes
sounding the second and third harmonics respectively of the desired tone. The
combination is known as an "acoustic bass"; if well designed, it may give the
impression that we are hearing a single CCCC pipe, although we cannot escape
hearing its third harmonic also in quite disproportionate strength.



Much the same thing appears to happen in the lowest notes of the piano. The
fundamental tones of these are so deep that the ear only hears them when they are
sounded with immense energy, in which case the upper harmonics sound intolerably
loud. Under ordinary conditions, it seems likely that the ear hears only the harmonics
directly, and the fundamental note only as a difference tone.
At the other end of the musical scale the same principle is utilised in the "mixture"
stops of the organ. This is a generic name applied to a number of stops (mixture,
cornet, cymbal, sesquialtera, furniture, harmonics, etc.) in which each key sounds
several small pipes of high pitch. Usually, but not always, the notes sounded by the
separate pipes are harmonics of the fundamental note. For instance if we sound
bottom C of the organ, a mixture stop may sound any of the following notes:

Fig. 63.

The modern mixture stop is used mainly to add brilliance to the tone. As compared
with the tone of the piano (p. 91) or violin (p. 76), or the wind instruments of the
orchestra (p. 147), organ tone is deficient in those higher harmonics which make for
brilliance, so that brilliance can only be attained by introducing these harmonics
artificially in the form of sound from separate pipes. But in old organs the mixture
stop often served an entirely different purpose, the harmonics provided by its shrill
pipes combining to produce the fundamental as a combination tone, much as in the
"acoustic bass" of to-day. Some of the old organs which are still to be found in North
Germany, Holland and Northern Italy would seem from their specifications to be a
miscellaneous collection of mixture ranks, but when heard are found to produce a
deep rich tone from a series of very small pipes. By using pipes of the pitches to
which the ear is most sensitive, the organ-builders of past days could fill a church
with rich full organ tone out of an instrument which occupied less room than an
upright piano, and needed amazingly little wind to blow it. On the other hand, this
plan had its disadvantages. As each individual pipe of the mixture gave out its own
harmonics in addition to its fundamental tone, the effect of too many ranks of
mixtures was apt to be shrill and discordant, and whenever possible the purer tones
of larger pipes were introduced as well. For instance the famous Schnitger organ in
S. Jacobi at Hamburg has eleven ranks of mixtures on the pedals, but it has two 32-
foot registers as well; the manuals contain thirty-nine ranks of mixtures and
mutations, but also four registers of 16-foot pitch.



The Mechanism of the Ear

It would form a pleasing and perfect ending to our book if we could explain how the
ear comes to have all the remarkable capacities we have noted. Unhappily this is still
beyond the powers of science; no completely satisfactory theory of hearing, or of the
mechanism of the ear, has yet been found.
So far our explorations have taken us no farther into the ear than the ear-drum and
the chain of small bones, the ossicles, which lie immediately behind it. This chain of
bones transmits the motion of the ear-drum to a second membrane—the "oval"
membrane of the cochlea (fig. 1)—and incidentally serves as a safety device acting
rather like the slipping clutch of a motor-car, which may save the oval membrane
from injury, if the ear-drum is set too violently into sudden motion. On passing
through the oval membrane, we find ourselves inside the hard bony structure of the
cochlea. Viewed from outside this looks somewhat like a snail's shell, or a coiled
tube. The tube has a total length of about 1¼ inches; its diameter decreases steadily
as we pass along its length, the average being only about 1/16 inch. The tube is
hollow inside, and is divided longitudinally into two approximately equal parts, so
that each has a length of 1¼ inch, an average width of 1/16 inch, and an average
height of 1/32 inch. These two divisions may be described as the upper and lower
galleries. Both are filled with fluid and the only connection between them is a small
opening, known as the helicotrema, at the narrow end. The oval membrane itself
forms a sort of window at the broad end of the upper gallery, while a similar but
circular membrane forms a window to the lower gallery. Apart from the coiling of
the tube of the cochlea, the arrangement is that shewn diagrammatically in fig. 64.

Fig. 64. Diagrammatic representation of the cochlea, uncoiled.

When the ear-drum is set into vibration, its motion is transmitted through the ossicles
to the oval membrane, and from this to the fluid in the cochlea. Waves of pressure
then travel through the fluid in the upper gallery, pass through the helicotrema, along
the lower gallery, and finally expend their energy in producing vibrations in the
circular membrane.

All the mechanism so far described has served merely to send these pressure-waves
along the two galleries of the cochlea, and prevent their being reflected back again.
If the floor separating these galleries were an ordinary floor, this would be the end of
the matter, but it is no ordinary floor. Over about half its width, it consists of bone—
a sort of balcony projecting out from the wall of the cochlea. The other, and the more



remarkable, half consists of a thin continuous membrane, the basilar membrane, the
structure of which is strengthened by an immense number of tightly stretched fibres.
If we have to compare it with a familiar object, by far the best to choose is a grand
piano, built with enormous complexity, but on a diminutive scale. Although the
membrane is only an eight-thousandth of an inch in thickness, and 1¼ inches in
length, yet about 24,000 fibres are embedded in it, ranging in length from a fifteenth
to a 170th of an inch. The short fibres which correspond to the treble wires of the
piano are very tightly stretched, while those at the other end—the bass wires—are
much looser.
The whole structure is on so small a scale that there is a temptation to dismiss the
comparison with a piano as fanciful. There is, however, very convincing evidence
that the various "strings" of the instrument are associated with notes of different
pitch. Experimenters have been able to damage selected bits of the basilar
membranes of animals—as, for instance, by drilling minute holes through the wall of
the cochlea—and find that the animal then becomes deaf to notes of certain pitches
and no others; in this way it is possible to map out the basilar membrane in terms of
the frequencies of sound of different pitches.
 The converse experiment can also be performed. An animal is made deaf to a note of
any selected pitch, and the corresponding section of its basilar membrane is then
found to have been damaged.

This makes it abundantly clear that each fibre is in some way associated with a
definite frequency of sound, and it is natural to suspect that these frequencies are
those of the free vibrations of the fibres. It may seem incredible that a fibre less than
a fifteenth of an inch in length can be made to emit the same note as a piano wire 6
feet in length—for this is implied in the hypothesis we are considering—but
calculation suggests that there is no impossibility. We can lower the pitch of a
stretched string by adding to its mass—as indeed is commonly done in the piano by
coiling copper wire round the bass strings. The fibres of the basilar membrane are
embedded in the membrane itself and, as this shares the motion of the fibres, it adds
to their effective mass. Moreover the motion of the membrane sets the fluid which
fills the cochlea into motion, so that this also adds to the effective mass of the fibres,
especially at the bass end, where the galleries are widest.
Beatty has estimated that if the bass fibres are stretched to a tension of about 3 lb. to
the square inch of cross-section, they will vibrate in the frequencies required of
them. He finds also that for the treble fibres to vibrate in their required frequencies,
they must be stretched to a tension of about 4 tons to the square inch. This is a large,
but by no means impossible, tension. Human hair can be stretched to a tension of
about 9 tons to the square inch before breaking, while catgut and silkworm gut will
survive tensions of 27 and 32 tons to the square inch respectively. A steel pianoforte
wire does not break until the tension reaches about 150 tons to the square inch.



Thus there is every reason to think that the basilar membrane and the fibres
embedded in it have most of the properties of the sound-board and wires of a grand
pianoforte. We have seen how the latter may be treated as a series of resonators;
sound-waves passing through the air set the sound-board into vibration, and the
wires of the same frequency as these sound-waves are then set into strong vibration
by resonance. In the same way sound-waves passing through the fluid of the cochlea
must set the basilar membrane into vibration, and probably cause the fibres of their
own frequency to vibrate strongly. It is now easy to imagine a separate nerve
connecting each fibre to the brain, and minute currents in these nerves keeping the
brain informed as to the vibrations of the different fibres, and so of the composition
of any sound which may be falling on the ear-drum.
Such, in broad outline, is the "resonance theory of hearing". It explains at once why
the ear can resolve a chord into its constituent notes of different pitches. The eye
does not possess this power, for it cannot resolve a blend of colours into the separate
pure colours of which it is constituted, and this alone shews that the mechanism of
the ear must be very different from that of the eye. The resonance theory also
accounts for the law of Ohm—that the ear cannot distinguish phase differences in
the constituent vibrations out of which a composite tone is formed. In brief, it does
not inform the brain as to the mathematical shape of the sound-curve it is hearing,
but only as to the way in which the energy is distributed over the different pure
tones. No theory of hearing which fails to explain these two outstanding facts can be
seriously considered; the resonance theory passes the two tests triumphantly. Many
other theories of hearing have been propounded, comparing the mechanism of the
ear to that of a telephone, a flexible diaphragm, a pulsating artery, and so forth, but
most fail under these tests.
On the other hand, when attempts are made to develop the resonance theory in
greater detail than has been described in the present book, difficulties are
encountered at once.

The galleries above and below the basilar membrane are not empty, and could not
be, since they contain the machinery needed to transform the purely mechanical
vibrations of the fibre into electric currents, as well as the nerves which carry these
currents to the brain. Within the small volume of the cochlea lie 24,000 minute
electrical machines, and from the central axis of the cochlea emerges a cable of
24,000 conducting nerves. This machinery is inevitably complicated—so
complicated that science has not yet completely discovered its workings.

Hearing in Animals

If the ear of man is surprising in its intricacy and powers, those of the lower animals
are even more so. The ears of mammals are generally similar to those of man, but
simpler. The cat, for instance, has 3 complete turns in its cochlea, as against man's



2¾, but its basilar membrane has only 16,000 fibres as against the 24,000 of man.
Reptiles and birds have somewhat similar but again simpler ears, birds having only
about 3000 fibres in their basilar membrane.
 For a long time insects were thought to have entirely different organs of hearing, but
recent knowledge shews that they have ears which are in many respects similar to
those of the vertebrates, although they are often located in what seem strange places
to us, such as the abdomen, thorax, or even on the forelegs, just below the knee-
joint.
On the ordinary grasshopper, the ear-drums can be seen as little circular membranes
—one on each side of the lower part of the body—and behind these lie inner ears
which shew many resemblances to those of man. There are other grasshoppers
whose ears are in their forelegs. Professor Regen of Vienna has specially studied the
ears and hearing of the grasshopper Thamnotrizon Apterus. The females are courted
in a sort of singing, or rather chirping, contest; he who chirps best wins the prize.
There can be no question that the "sex-appeal" operates through the sense of hearing,
and not, for instance, through sight or smell, since the female can be excited by
telephone; if the male can be persuaded to chirp at one end of a telephone line, a
female at the other end will jump into the air and settle down to listen in front of the
receiver. The male can also be sent up in a small balloon, when the females follow to
listen to him. Under more normal conditions the female flies directly towards that
male which attracts her most. But if the membranes just below her knee-joints are
punctured or destroyed, she can no longer hear anything, and no such flight takes
place; if only one of the two membranes is destroyed the female still seeks her male,
but her sense of his direction is lost; she flies in a lopsided way, and only finds him
after a succession of misdirected flights.

To mention only one other instance, various kinds of butterflies and moths have a
pair of ears on the thorax. Their range of hearing is small, being generally limited to
tones of high pitch. The ordinary notes of a musical instrument have no effect on
them, but a high screech or squeak, such as is made by drawing a piece of cork over
glass or turning a glass stopper round in the neck of a bottle, will make them change
the direction of their flight. If, however, the membranes on the thorax have been
destroyed, no such reaction takes place, shewing that their sense of hearing is really
located in their waists.[P]

Students of evolution in the animal world tell us that the ear was the last of the
sense-organs to arrive; it is beyond question the most intricate and the most
wonderful.
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FOOTNOTES:
Many other investigators have worked at the problem, their results generally agreeing

fairly closely, although not always exactly, with those stated in the table. The most recent
investigations, by Andrade and Parker (1937), yield results which are in very close
agreement with those of Fletcher and Munson.

This defines the British standard phon. The Americans use the same phon as the
British, but frequently describe it as a decibel. The Germans use a different zero point,
0.0003 dyne in place of 0.0002.

Many other interesting examples are to be found in Beatty's Hearing in Man and
Animals (Bell, 1932), from which much of the above information is taken.
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Conical orchestral wind instruments, 144

Conical organ-pipes, 144

Conical pendulum, 36

Cornet (organ-stop), 244

Coupled system, 131

D'Alembert, 156

Davis, A. H., x and G. W. C. Kaye, x, 208

Debussy, 187

Decibel (unit of sound intensity), 224, 230

Delezenne, 178

Diapason tone on organ, 86, 124, 139, 214

Diaphragm of telephone, 8, 57, 240

Difference tones, 51, 235, 237 ff., 240

Discord, 153 ff.



Helmholtz's theory of, 157

Dorian mode, 168, 180

Drums, 77, 123, 242

Dynamo, hum of, 22

Ear, human, 2, 4, 231, 245
of birds, 4, 250
of butterflies, 252
of cats, 4, 250
of fishes, 3
of frogs, 4
of grasshoppers, 252
of insects, 251
of moths, 252
of reptiles, 250

Ear-drum, 6 ff., 231, 245

Eddies, in air, 125 ff.
in water, 124, 125, Plates V (p. 124) and VI (p. 125)

Edge tones, 128 ff.

Egypt, music of ancient, 160, 164

Electric organ, 22, 85

Electrically driven tuning-fork, 60

Ellis, A. J., ix, 144

Energy, of a vibration, 37, 44
of a sound, 229

Equal temperament, 25, 174, 185

Equilibrium, positions of, 28

Euler's theory of harmony, 155



Expressiveness, of piano, 98, Plate IV (p. 99, 103
of violin, 103

Fechner's law, 223

Fifty-three note scale, 189

Fire-damp, detection of, 120

Firestone, F. A., 232

Fletcher and Munson, 219, 227, 228

Flue-pipes of organ, 130 ff., 145, 146

Flute (organ-stop), 140, 142
Boehm (orchestral), 141

Flute tone, 149, Plate VIII (p. 150)

Forced vibrations, 52, 83, 133, 140

Formant, of violin, 104
of wind instruments, 148

Foundation tone, 74

Foundling Hospital (London), organ in, 173

Fourier's theorem, 78, 82, 140, 233, 234

Free reed, 143

Free vibrations, 52
of a column of air, 123
of a solid, 77, 123
of a string, 65, 84, 123

Frequency, of a vibration, 21
of musical tones, 22, 25, 27

Fundamental tone, 74



Gamba (organ-stop), 140, 214

Garstang, 164

Gases, speed of sound in, 119
structure of, 107

Gewandhaus (Leipzig), 209, 216

Glarean, 169

Gramophone, 14

Gramophone records, 14, 25

Grasshopper, hearing of, 251
Greek music, ancient, 161, 164, 168

modern, 161

Guitar tone, 89

Hamburg, Schnitger organ in S. Jacobi, 23, 175, 245

Hammer-piano, tone of, 97

Hammond electric organ, 85

Handel, G. F., 23, 173, 184, 185

Harmonic analysis, 78, 84, 88

Harmonic organ-pipes and -stops, 142

Harmonics, 72 ff., 76
natural, 83, 84, 123
(organ-stop), 244

Harmonium reed, 143

Harmonium tone, 144



Harmony, theories of, 154 ff.

Harp, tone of, 89, 99

Harpsichord, tone of, 89

Hart, Fuller and Lusby, 99

Helicotrema, 246

Helmholtz, H. von, ix, 50, 57, 84, 92, 93, 100, 101, 158, 159, 178
on equal temperament, 185
on key characteristics, 181

Helmholtz notation, 27

Helmholtz summation and difference tones, 235, 238

Helmholtz theory of harmony, 157 ff., 171

Hemitone (Pythagorean), 167

Hensen, 128

Hermann-Goldap, 148

Heyl, 211

Homophonic music, 161

Horn, tone of, 149

Howling, of the wind, 127
of wolf-note, 173

Indian music, 161

Insects, hearing of, 251

Interference of sound, 44, 102

Intonation, scale of just, 176 ff.



Ionian mode, 168

Joachim, 178

Just intonation, 176 ff.

Kaye, G. W. C., x, 208

King, A. J., 223

Kundt's experiment, 111

Labyrinth of the ear, 2

Lark-Horowitz and Caldwell, 105

Lateral-line organ of fish, 1

Lifshitz, 208

Liszt, 187

Locrian mode, 168

Loops, 76

Lootens, 128

Loudness, 43, 44, 225, 229, 230

Lydian mode, 168, 180

Mayer, A. M., 50

Mean-tone scale, 172

Melde's experiment, 65, 70

Membrana tympani, 6



Membranes, vibrations of, 77

Mercator, Gerardus, 190

Mersenne, 64, 175

Mersenne's laws, 64, 65

Metallic tone, 87, 91, 92, 104

Meyer, E., 94

Miller, D. C., ix, 83, 94, Plates I (p. 13), II (p. 34), III (p. 94), VIII (p. 150), IX (p.
151)

Mixture (organ-stop), 243, 244

Modes, ecclesiastical, 169
Greek, 168, 179, 180

Molecules, 107

Monochord, 62

Moths, hearing of, 252

Mouth correction, 139

Munson, 219

Myxolydian mode, 168

Natural harmonics, 83, 84, 123

Nickings on organ-pipes, 136

Nicomaeus, 162

Nodes of a vibration, 75

Oboe, instrument, 144



(organ-stop), 144
tone of, 149, Plate VIII (p. 150)

Octave, 24, 161
physical meaning of, 24, 74

Ohm's law (acoustics), 86, 249

Open-end correction, 139

Optimum reverberation period of room, 208

Orchestra, best size of, 210

Orchestral instruments, 103, 123, 147, and under separate instruments

Organ-pipes, flue, 130 ff.
harmonic, 142
harmonics of, 77
length of, 23, 27, 139
open, 138
reed, 142
stopped, 137
tone of, 77

Orpheus, 162

Oscillations, 29

Oscillograph, 13

Ossicles, 7, 245

Oval window of labyrinth, 2, 245, 246

Pauer, Ernst, 182

Pendulum, conical, 36
period of, 31

Pentatonic scale, 164

Percussion instruments, 77, 123



Period, of a pendulum, 31
of a vibration, 21
of reverberation, 202

Phase of a vibration, 40 ff.

Phase-difference of vibrations, 44, 86, 249

Phon (unit of loudness), 225, 230

Phrygian mode, 168, 180

Pianoforte, construction of, 65
hammer of, 92, 93
sound-board of, 99
technique of, 58, 74
tone of, 76, 91, 95, 96, 243
used as resonator, 58, 74

Pisa, Baptistry at, 204

Pitch, of a musical tone, 22
standard, 23, 27

Plato, 180, 183

Plucked string, vibrations of, 81, 89, 93

Police whistle, 242

Pretorius, 23

Primitive man, music of, 4, 123, 160 and frontispiece

Pure tones, 17 ff.

Pythagoras, 62, 63, 154, 164
comma of, 165, 174
law of, 64, 68, 72, 113

Pythagorean doctrine of harmony, 154

Pythagorean scale, 164, 166 ff., 170, 171



Quarter-tones, 188

Queen's Hall pitch, 23

Quintadena (organ-stop), 141

Quintaten (organ-stop), 141

Quinte-de-loup, 173

Radio, 15, 57, 59

Radio reception, 59, 241

Radio transmission, 15

Rameau, 157

Rames, Bartolo, 174

Rayleigh, Lord, x

Reed-pipes of organ, 142, 145

Reeds, 143 ff.

Reflection of sound, 193, 195 ff.

Refraction of sound, 121

Regen, 251

Reptiles, hearing of, 250

Resonance, 55, 83, 110 ff., 127

Resonance theory of hearing, 249

Resonators, Helmholtz, 58
of reed-pipes of organ, 143, 146
piano used as, 58, 74



Reverberation, 198 ff.
period of, 202

Richardson, E. G., x

Sabine, W. C., x, 199, 200, 208

Salinas, 173

Saxophone, sound-curve of, 150, Plate IX (p. 151)
Schlick, 173

Schnitger, Arp, 23, 175, 245

Schumann, 181

Scottish music, 164

Semicircular canals, 2

Semitone, interval of, 24, 167

Sesquialtera (organ-stop), 244

Shadows, sound-, 193

Silbermann, 23

Simple harmonic curves, 28

Simple harmonic motion, 28, 30, 36

Simultaneous vibrations, 32, 38

Sine curve, 28

Siren, 21, 25

Solids, speed of sound in, 148

Sorge, 237



Sound, speed of, in air, 116, 118
in gases, 119
in solids, 148

Sound-board of piano, 99

Sound-curves, 11
analysis of, 58
of orchestral instruments, 149 ff., Plates VIII (p. 150) and IX (p. 151)
of pianoforte, 94, Plates III (p. 94) and IV (p. 99)
of tuning-fork, 34, Plate II (p. 34)

Speaking, 215

Spring of air, 107

Spruce, 99, 148

Steam-saw, sound of, 21, 25

Stradivarius tone, 105

Stratosphere, 122

Striking reed, 143, 145

String, bowed, 100
plucked, 89
struck, 90

String-stops of organ, 86, 124, 140

String tone, 76, 86

Strings, vibrations of, 61 ff., 73, 79 ff., 84

Stumpf, 50

Sumerian music, 160 and frontispiece

Summation tones, 51, 235, 238 ff.

Superposition of vibrations, 39, 78



Syntolydian mode, 165, 168

Tartini, 237

Telephone, mechanism of, 8

Telephone diaphragm, 8, 57, 240

Telephone speech, 8, 240

Telephone wires, singing of, 127, 129

Temperament, 165 ff.
equal, 25, 174, 185
mean-tone, 172

Temperature, effect of changing, 145

Threshold of hearing, 218, 220, 227

Timbre, 84, 86

Trace of a vibration, 18

Transmission of sound, 14

Triangle, vibrations of, 77, 123

Tromba (organ-stop), 144

Trombone, 144, 149

Trumpet, 144, 149

Tuning-fork, 17 ff., 21, 76
electric, 60 sound-curve of, 34, Plate II (p. 34)
vibrations of, 21, 33, 34, 46, 77

Turkish music, 161

Unda maris (organ-stop), 48



Ur, music of, 160 and frontispiece

Vibrations, 29
energy of, 37, 44
forced, 52, 83, 133, 140
of air, 109 ff., 123
of solids, 77, 123
of strings, 61 ff., 73, 79 ff., 84
of tuning-fork, 21, 33, 34, 46, 77
phase of, 40, 44, 86, 249
simultaneous, 32, 38

Viol d'orchestre (organ-stop), 140

Viola, tone of, 104, 105

Viola da gamba (organ-stop), 140

Violin, construction of, 104 ff.
expressiveness of, 103
tone of, 76, 102, 104

 Voix celeste (organ-stop), 48

Vowel sounds, 83

Wachsmuth, R., 128, 129

Wagner, 187

Watson, F. B., x, 209, 210

Waves, sound-, 6, 7, 20
in air, 6, 116 ff.
in strings, 69, 72

Weber's law, 222, 224

Weerth, M., 128

Whirlpool in water, 124



Whirlwinds in air, 124 ff., 129

Whistle, 242

Whistling of the wind, 126

Wind, sound carried with, 120

Wind instruments, orchestral, 144, 147, and under separate instruments

Wireless sets, 15, 57, 59, 241

Wohltemperiertes Klavier (J. S. Bach), 175

Wolf-interval, 173

Wood, A. R., x

Woolley, Sir L., 160

X-ray analysis of old violins, 105

Zauberflöte (organ-stop), 142
[The end of Science and Music by James Jeans]
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